HP E6237A
Compiled SCPI for LynxOS

User’s Guide

Notice

The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP makes no warranties of any kind with regard to this
document, whether express or implied. HP specifically disclaims the implied
warranties of merchantability and fitness for a particular purpose. HP shall
not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory, in
connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as “commercial computer
software” as defined in DFARS 252.227-7013 (Oct 1988),

DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995),
as a “commercial item” as defined in FAR 2.101(a), or as “Restricted
computer software” as defined in FAR 52.227-19 (Jun 1987) (or any
equivalent agency regulation or contract clause), whichever is applicable.
You have only those rights provided for such Software and Documentation
by the applicable FAR or DFARS clause or the HP standard software
agreement for the product involved.

Copyright[J 1997 Hewlett-Packard Company. All rights reserved.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under the copyright laws.

Intel 486™ is a U.S. trademark of Intel Corporation.

Pentium® is a U.S. registered trademark of Intel Corporation.

UNIX® is a registered trademark in the U.S. and other countries, licensed
exclusively through X/Open Company Limited.

Printing History
Edition 1 - August 1997

Contents

1. Getting Started with Compiled SCPI

ConNVENIONS USEd.......ccuiiiiiieiesie et 2
Verifying your Compiled SCPI SysStemccccoevieveenieniee e eniee e 3
Preparation CheCK LiStcocvcviiieiee e 3
Reviewing System COMPONENES..........cccccievereiernieesire e see s see e snees 3
Verify SYSIEmM SEtUP.....coe e 4
Running your First Compiled SCPI Program........ccccceevvveeveniseesesinnnns 6
Using the Getting Started Tutorialccccecvvevieeiiciecceseeee e 6
Review the C-SCPI PrOCESScccviiieererereeee e 8
Reviewing getstrt1.cS Program.........ccooeeeeeeieereneneeneeseeee e 9
Accessing C-SCPI Online Documentation............ccccevvveveevieseeivnnnns 10
Learning About Compiled SCPI..........cccccviirieieiesece e 11
Advantages of Using Compiled SCPIccccceeieevinvienviineiee e 12
Compiled SCPI SYStEMccveirireieeeeeee e 13
Maximum System Throughput with Compiled SCPI 14

2. Using Compiled SCPI

OVENVIEW OF C-SCPl......c.coiiiiiiriirieiceree e 16
Creating SOUrCE COUR.......cceerririereeeneriesiee e 18
Defining the C-SCPI ComMmands...........ccoeoverernirenineseseeeeeeeiens 19
Running the C-SCPI PreproCessorccuvvererereesreesesesre e 20
Compiling/Linking Your COOEcccvvivrieiieesieesiee e e eee e 22
EXeCUting Y our Program.........ccceeeeeeeveeseeseeseeses s sreessesseeseessnee s 25
USING MAKEFITES......ccueeeiecee s 25
PreproCesSor OPLiONS.........uieieriereeeeiee sttt eenea 27
The Compiled SCPI Preprocessor Commandccceeereieeieeenne. 27
Storing Block Datain a Separate File (The -f Option).........cccccccvee. 27
Using SCPI Only Files (The-i Option)........cccccvvcvivieeceeieeveeseeiens 29
INtEraCtive FUNCLIONSccoiiiiiiiiececceses e 32
Using Interactive FUNCLIONS...........cccoeviviveiie e 32
Programming with Interactive FUNCLIONS...........ccoccvereieneneniee 34
Overlapped MOGEoouirieeeiciie e 36
Determining if you Should use the Overlapped Mode...................... 36

Contents-1

2. Using Compiled SCPI (continued)

Throughput and the Overlapped Mode..........cccocveveeceeiie e
Overlapped CommaNd...........ccoveveiiieeieceseee e
Using the Overlapped MOde............ccoeveeveiecce e
Controlling Overlapped EXECULION..........ccccveeeereiieiise e
Programming for EffiCciency.......cccccve i

3. Programming with Compiled SCPI

Looking at an Example System Configurationc.ccoceeererienienens
Providing an Error ROULINEcccveeie i
Programming with a Scanning Multimeterccccoovcveviveceeniennen,
Programming with an External File..........cccooevviiieii e
Programming with a C-SCPI Parameter List..........cccocvvveviviecceennnne,
Storing Block Datain a Separate File (The -f Option)c...........
Using C-SCPI in the Interactive Mode...........ccccevveeeveveececie e,
Triggering with the HP Embedded Computer...........cccccvvoveneneeenen.

4. Troubleshooting Compiled SCPI

Resolving Compiled SCPI Preprocessor Errors.........ccocevvveeveneenee.
Resolving Compile and LinkK EFfOrS........c.cccoveeeeeviieeieseecese e
Resolving Compiled SCPI Run-Time Errors.......cccccoeceevvecveesnnnnen.
USiNg GNU DEDUGQETccveieiie et cee e e snee e eneas
Trapping Errors With CSCpi_errorcoeeeeeveeieeceeree e

5. Compiled SCPI Command Reference

LIS I =7 = SO
INST _CLOSE . ovvveoeeveeeeeeeeeesseseseesesssseessessesesessssessessssesesessssesssssssseens
NS) =10 OO
INST_EXTERN w.oooroveeoeeeeeeseeseeeeeeseeeseeseesseeseesseeeesessseeessssseeesssseeeons
NI) NI =0 TN
LTS3)= = N TR OO
INST _PARAM w..oooriveeeeeeeeeeeeeseeseesesseeeeeses s seessseeseessssesesessseeseseseenes 100
INST_QUERY ooooooeevveeeseeeeeeeesessesessesseeeesesseesesesssssseessseeesessseessssseenes 102
INST_READSTB ..oovvveeeeeeeeeseseeeeeeseessseeesessssseessssesessesseesssssseseesesssees 108
LTS RS =N o SRS 110
INST_STARTUP ..o eeeeseseseeeseesese s s eeesneees 116

Contents-2

Contents

5. Compiled SCPI Command Reference (continued)

(oot o = IR == 1 RS
(oot o [e L= 0.V ! o S
(oot o [0 V7= 1 = | TS
Compiled SCPI QUiCK REFEIENCE........cceeeeiereee e

A. Online Documentation
How To Use Manual Pages..........cccvevvieieesese e

B. Compiled SCPI Softwar e Installation

C. Compiled SCPI File Structure

C-SCPI DIFECIOIES. ... ceeeeeeeeeeeeeeeeee e et e e e e e e s s eearrereeesseseereeeeeeesn
O DITECIOMES ..ottt e e e e e e e e e e e e e eaeeeeeeas
Structure for C-SCPl 0N LYNXOS........cccoiiiiieiereseeeree e

D. Threadsand Compiled SCPI

Writing your Compiled SCPI Programs.........cccccceevieeveevensieesneene,
Compiling your Compiled SCPI Programs..........cccceeveveeeeneneeneene.

E. Error Messages

Compiled SCPI PreproCessor EITOrS......couveieeeveeeieeeseeseeseessessnens
Compile and LinK EITOrS......ccccoveieeeriieeiee e eree e siesee e eres e
RUN-TIME EITOIS....cctee ettt et e

F. Other Documentation

Contents-3

Contents-4

Getting Started with Compiled SCPI

Getting Started with Compiled SCPI

Welcome to the Compiled SCPI (Standard Commands for Programmable
Instruments) User’s Guide. Throughout this guide Compiled SCPI is called
C-SCPI. Thisguide provides detail ed information about how to use Compiled
SCPI. Example Compiled SCPI programs and troubleshooting informationis
provided as well. For information about specific VXI instruments, see the
instrument’s user’s manual or the online documentation provided.

Conventions Used

This guide uses the following conventions:

Notation Description
non-italics | Non-italicized words within the Syntax description are literals. That is, enter them exactly
as shown. This includes non-italicized braces and brackets. Non-italicized words and
punctuation appear in COMPUTER FONT.
italics Italicized words within the Syntax description represent argument names, program names,

or strings that you must replace with an appropriate value.

[]

Brackets within the Syntax description determine optional elements.

2 Chapter 1

Getting Started with Compiled SCPI
Verifying your Compiled SCPI System

Verifying your Compiled SCPI System

To ensure that you are ready to start programming your system using the
Compiled SCPI software, you should review the system check list for
hardware and software requirements, learning products, verification of your
system setup, and how to run asimple program. The following lists the steps
in preparing for a successful experience.

Preparation Check List

1. Review System Components
-- Hardware Requirements
-- Software Requirements
-- Learning Products

2. Verify your System Setup

3. Run your First C-SCPI Program (see “Running your First Compiled
SCPI Program” on page 6)

Define C-SCPI Process

-- Run the C-SCPI Preprocessor
-- Create Executable Code
Execute your Program

-- Access C-SCPI Online Help

Reviewing System Components

This section lists the system components you should have upon receipt of
your system. The requirements for this system include hardware, software,
and learning products or documentation.

Hardv_vare The minimum hardware requirements for your system are as follows:
Requirements * HP Pentium® embedded controller with:

-- minimum 1GB disk drive

-- 16 MB DRAM

Chapter 1 3

Software
Requirements

Learning Products

LynxOS Real-Time
Operating System

SICL for LynxOS

Getting Started with Compiled SCPI
Verifying your Compiled SCPI System

The software requirements for your system are as follows:
» LynxOS Real-Time operating system
» HP SICL software for LynxOS
* HP Compiled SCPI
-- Preprocessor
-- all instrument drivers

The learning products you should have with your system include the
following:

* LynxOS complete manual set

« HP SICL complete manual set

« HP Compiled SCPI
-- HP Compiled SCPI User's Manual (this document)
-- HP Compiled SCPI Online Documentation

-- HP Compiled SCPI Example programs
(/ usr/ hp75000/ denps/ cscpi)

Verify System Setup

This section provides commands to verify that the required software is
installed. See Appendix B for C-SCPI installation instructions.

At the command prompt, type the following command:
unane -r

This will display the version number of the operating system. Release 2.5.0
or later of LynxOS Real-Time is required to run the C-SCPI software. You
should see something similar to the following:

2.5.0

At the command prompt, type the following command:
devi ces

In the list, you should see the following device:
sicl _driver

4 Chapter 1

Getting Started with Compiled SCPI
Verifying your Compiled SCPI System

C-SCPI Software At the command prompt, type the following:
ident /lib/libcscip.a

When you execute this command, information for the C-SCPI preprocessor
and each instrument driver installed on your system islisted:

* name of C-SCPI software or Driver

* version number

Chapter 1 5

Note

Getting Started with Compiled SCPI
Running your First Compiled SCPI Program

Running your First Compiled SCPI Program

This section provides a guide to using HP Compiled SCPI (C-SCPI)
commands within your C program and to running the C-SCPI preprocessor.

This chapter focuses on using C-SCPI Commands and its preprocessor. It
does not focus on teaching you how to program using the GNU CC
Compiler provided by Lynx Real-Time Systems Inc.

A tutorial is provided to step you through the C-SCPI process of creating
executable code. It uses a simple C program with C-SCPI commands to get
you up and running quickly. This program does not attempt to do anything
very ambitious. Task-oriented programs are provided in Chapter 3.

Using the Getting Started Tutorial
This section steps you through the process for creating C-SCPI executable code.

1. Copy the getstrtl.cs program to your directory

-- Theprogram, get strt 1. cs, islocated in the directory
/ usr/ hp75000/ denos/ cscpi . Once you have copied the sample
program into your own directory, you can treat it as you would any C
program. Figure 2-1 listsget st rt 1. cs initsentirety for your
convenience, and isdisplayed later in this chapter. Thisexample usesa
Hewlett-Packard multimeter (HP E1411B instrument) at logical
address 24. (Note: if your multimeter isNOT at logical address 24, you
must change the address in the C-SCPI example program. See
“Reviewing getstrtl.cs Program” on page 9.)

2. Run the C-SCPI Preprocessor

-- Run the C-SCPI preprocessor to translate your C-SCPI commands
into C function calls by typing the following at the command prompt:

cscpipp getstrtl.cs > getstrtl.c

3. Compile your program

-- Compile your program by typing the following at the command prompt:

gcc -c [-g] -nmhreads getstrtl.c

6 Chapter 1

Getting Started with Compiled SCPI
Running your First Compiled SCPI Program

Comments

® The-c optioncreatesafilecalledgetstrtl. o

® The-g opti on indicatesto the compiler that the output should
contain debug information (thisis optional)

® The-nt hr eads opti on indicatesthreaded functions are being

used
® The-| opti on causesthe listed path to be searched for more
includefiles

4. Link your program

-- Link your program by typing the following at the command prompt:

gcc [-g] -nthreads -o getstrtl getstrtl.o
-l cscpi -1sicl

Comments

® The-g opti on indicatesto thelinker that the debugger isbeing
used

® The-nt hreads opti on indicatesthreaded functions

® The- o0 opti on creates an executable file called getstrtl

® The-| options linkinthe C-SCPI and SICL libraries

5. Execute your program

-- Execute your program by typing the following at the command
prompt:
getstrtl
The result of executing this program should be SIMILAR to the
following:
The id of this npbdule is HEW.ETT- PACKARD,
E1411B, 0, E. 05.02

Note To Compile and Link in one step, refer to “Compiling/Linking your Code”
in Chapter 2. Also, you can use a makefile to run the preprocessor, compile
and link your programs. Refer to “Using Makefiles” in Chapter 2 for
information on using a makefile.

Chapter 1 7

Getting Started with Compiled SCPI
Running your First Compiled SCPI Program

Review the C-SCPI Process

Thefollowing flowchart defines the C-SCPI process to create executabl e code.

1

2.

3.

4,

5.

Copy the getstrtl.cs program or Write a C program with C-SCPI commands

ﬁ*getstrtl.cs \

#i ncl ude <cscpi. h>
INST_DECL (vm,’E1411B",REGISTER);
main ()

{
INST_STARTUP()

INST_OPEN(vm,"vxi,24");
INST_SEND(vm,*RST");

N /

Run the C-SCPI Preprocessor

(cscpipp getstrtl.cs > getstrtl.c)

Run your C compiler *

(gcc -c [-g] -mthreads getstrtl.c >

Link your code with C-SCPI and SICL libraries

gcc [-g] -mthreads -o getstrtl getstrtl.o
-lcscpi -1sicl
Run the executable code

(getstrtl)

Chapter 1

Getting Started with Compiled SCPI
Running your First Compiled SCPI Program

Reviewing getstrtl.cs Program

Figurel-1liststheget st rt 1. cs programinitsentirety for your convenience.

-

/* getstrtl.cs: Print the identification of \
t he nodul e, manuf act urer, and revi si on nunber;
uses C-SCPlI preprocessor conmands. */

#i ncl ude <stdio. h>
Standard Header FII$_<#i ncl ude <stdlib. h>

C-SCPI Header File ——— #i ncl ude <cscpi . h>

Main Function

void main ()

{
char vm. d[40];

Commands

C-SCPI Preprocessor | — INST_DECL (vm "E1411B', REQ STER);

| NST_STARTUP ();

I NST_OPEN (vm "vxi, 24");
if (vne=0)
{
printf ("Open failed on vmin");
printf ("cscpi open error nunber: %\ n",
cscpi _open_error);
exit (1)
}

Commands

C-SCPI Preprocessor _< INST_SEND (vm "*RST\n");

I NST_QUERY (vm "*IDN?\n", "9%", vm.id);

-

printf ("The id of this module is % \n ",vm.id);
exit (0);

/

Figure 1-1. getstrtl.cs C Program

Chapter 1 9

Additional
Information

Getting Started with Compiled SCPI
Running your First Compiled SCPI Program

If you do not have an HP E1411B instrument installed in your C-size mainframe,
you will need to change the following linesin the exampl e program:

-- INST_DECL (vm,"E1411B",REGISTER);
@ change the instrument driver to your instrument
E1411B———» E1330, E1446, E1414, etc.

® check the instrument mode
REGISTER—» REGISTER OR MESSAGE

-- INST_OPEN(vm,"vxi,24");
® change the logical addressto your instrument’s logical address

Accessing C-SCPI Online Documentation

To access online documentation via manual pages, type the following at the
command prompt (remember, man is case sensitive):

man name
-- where name is replaced by the following:

C-SCPI Command, (e.g., INST_DECL)
Instrument driver, (e.g., E1411B)

For acomplete list of instrument drivers available, type the following at the
command prompt:

man cscpi _drivers

You can also usethecscpi pp - ? command to find out what drivers are
installed on your system.

For additional information on accessing C-SCPI online documentation, refer
to Appendix A. C-SCPI manual pages include the following topics:

* C-SCPI Macro Commands

» C-SCPI Function Calls

e C-SCPI Preprocessor Command

» Each Supported HP VXI Register-Based Instrument

10 Chapter 1

Getting Started with Compiled SCPI
Learning About Compiled SCPI

L ear ning About Compiled SCPI

Compiled SCPI (C-SCPI) isaproductivity tool designed to aid programmers
in achieving high throughput of register-based V XI instrumentation. Thisis
al done while using the easy to understand SCPI language. C-SCPI takes a

user’'s C program with special preprocessor commands and creates C source
code.

The user writes the test program in ANSI C language with the C-SCPI
preprocessor commands. The preprocessor commands contain specific SCPI
commands as arguments. When the C-SCPI preprocessor runs, it traps all
C-SCPI commands and replaces them with actual driver calls. If the
instrument is message-based or HP-1B (Hewlett-Packard Interface Bus),
C-SCPI usesthe appropriate HP SICL (Standard Instrument Control Library)
function to perform the task. The user then runs the outpuit file through the
ANSI C compiler and linker to create the executable code.

C-SCPI macro command
that sends a reset to the
multimeter

e
———— ————— > PR
————

o sl Compiled SCP| — m—

— Processor P

User's test program with The HP C-SCPI Preprocessor Precompiled code that
embedded C-SCPI macro that translates commands is ready to run through
commands into driver and SICL calls

your compiler/linker

The user’s standard C code is not affected by the C-SCPI preprocessor. The
user determines which ANSI C compiler to use and the code retains its

portability. Additionally, standard debugging utilities can be used to debug
programs.

Chapter 1 11

What Is VXI?

What Is SICL?

What Is SCPI?

Who Should Use
Compiled SCPI?

Getting Started with Compiled SCPI
Learning About Compiled SCPI

V Xlbusis an open architecture instrument interface for cardcage
instrumentation. It was created and is supported by a consortium of
manufacturers. Since VXlbusis an open standard, you can have a multi-
vendor environment. To find out more about V X Ibus, order your own Feeling
Comfortable with VXI book with HP P/N 5952-3080.

HP Standard Instrument Control Library (SICL) provides a modular
instrument communications library that works with a variety of computer
architectures, 1/0 interfaces, and operating systems. It uses standard
functionsto communicate over awide variety of interfaces. Seethe HP SICL
documentation for additional information.

Standard Commands for Programmable | nstruments (SCPI) is an industry
standard instrument control language that is supported by a consortium of
manufacturers. Using SCPI helps alleviate upgrade and obsolescence
problems since instruments understand the same commands regardl ess of
manufacturer. In the U.S, call HP Press at 800-333-0088 to order your
Beginner’s Guide to SCPI.

This product is intended for software devel opers with aworking knowledge
of the C programming language.

Advantages of Using Compiled SCPI

Compiled SCPI allows you to achieve the high throughput of register-based
cards with the ease of high-level programming. The following lists the
advantages of using C-SCPI:

-- High throughput of register-based V X1 instruments

-- Easy to understand SCPI commands

-- Use of industry standards (V X 1bus and SCPI)

-- Supports register-based, message-based, and HP-1B instruments

-- Can use standard debugging tools

-- C-SCPI preprocessor has a small command set

12 Chapter 1

VXI Instruments

Embedded VXI
Controller

More about
Compiled SCPI and
SICL

Getting Started with Compiled SCPI
Learning About Compiled SCPI

Compiled SCPI System

See the specific VXI Instrument manual for information on instrument
operating instructions and configuration. Thereis also online documentation
provided that contains a quick reference of SCPI commands and detailed
information about the card’s operation with C-SCPI. See Appendix A later in
this guide.

The embedded V XI controller is an HP Pentium computer based on the

Intel 486™ Pentium processor. In this configuration it acts as a VXI slot 0
system controller and resource manager. The main software items include the
following:

» SICL includes both the software that allows the controller to act as a
resource manager and the SICL /O library. The resource manager runs
automatically at start-up and determines the system configuration.

SICL is an input/output library that provides communication between
the embedded VXI controller and the VXI and/or HP-IB instruments.

« Lynx Real-Time Operating System is the program that provides the
system control and manages the system's resources.

« HP Compiled SCPI is a programming tool that consists of C-SCPI
driver libraries and a preprocessor. The C-SCPI preprocessor
transforms the C-SCPI programming commands into driver and SICL
calls.

Compiled SCPI uses HP SICL calls for communication between devices in
your system. C-SCPI allows users to program with the SCPI language to
perform instrument tasks. Without C-SCPI, the programmer would have to
either use SICL calls to write directly to the instrument's registers or use a
command module to interpret the SCPI commands. Writing to the instrument's
registers can be very complex and time consuming, and using a command
module slows down the program execution speed since the SCPI commands are
interpreted at run time instead of compile time as with C-SCPI.

There may be times when you want to program with both C-SCPI and SICL
commands. SICL calls are normally used when you have a register-based
instrument in your system that is not supported by C-SCPI and it does not
have its own driver. In this case you would have to communicate with the
instrument's registers or write a driver for this instrument. See Chapter 3 for
an example program with embedded SICL calls.

Chapter 1 13

Getting Started with Compiled SCPI
Learning About Compiled SCPI

Maximum System Throughput with Compiled SCPI

There are many levels of throughput which you can achieve with HP V XI1.
The following table shows the rel ationship between card types, ease of use,
and throughput.

Card Type and Programming
Language

Throughput and Ease of Use

Message-based card
Message commands

Standard throughput
Easy to understand commands

Register-based card
Command module to interpret
SCPI commands

Standard throughput
Easy to understand commands

Register-based card
Register programming

Best throughput
Difficult to program

Register-based card
Compiled SCPI to interpret
SCPI commands

Better throughput
Easy to understand commands

Register-based cards
Compiled SCPI running in

Best throughput
Easy to understand commands

Overlapped mode

C-SCPI provides both high throughput and ease of use. However, to get
optimum throughput, you must use the overlapped mode. Using the
overlapped mode allows you to execute several commands to different
instruments in parallel. See “Overlapped Mode” in Chapter 2 for more
information on increasing your throughput with the overlapped mode.

14 Chapter 1

Using Compiled SCPI

Using Compiled SCPI

Thischapter discusses how to use C-SCPI commandsin your C programsand
create executabl e code. Using source code from the sourcel.cs program, each
step is presented and explained. This chapter also describes preprocessor
options, interactive functions, and the overlapped mode.

Overview of C-SCPI

Compiled SCPI (C-SCPl) is aproductivity tool designed to aid engineersin
achieving high throughput with register-based V X1 instrumentation. C-SCPI

takes a user’s C program with special preprocessor commands and creates C
source code. The preprocessor commands contain high-level standard SCPI
commands as parameters. Before compiling your C program, the C-SCPI
commands are translated into C function calls.

The flowchart in Figure 2-1 describes the C-SCPI process.

16 Chapter2

Using Compiled SCPI

Write a C program with C-SCPI commands.

/example.cs*/ \

#include <cscpi.h>

INST DECL (vm,"E1411B",REGISTER);
This is your C program with main()
C-SCPI macro commands. % INST_STARTUP();
INST_OPEN(vm, "vxi,24");
INST_SEND(vm,"*RST");

_

You can use the make utility to
avoid multiple steps while Run Compiled SCPI Preprocessor.

compiling. Preprocessor

options are described in the % cscpipp example.cs > exampleD

""Preprocessor Options'' section
of this chapter.

The -c is to compile only; Run your C Compller

[-g] is to generate debugging

information; -mthread is to e @ -c [-g] -mthread exampla

use threaded functions.

Link your code with C-SCPI libraries.

. . . T . cc mthreads -o example
Link in the cscpi and sicl libraries. % o e)[(a?néle o -lescpi 131::? >

Run the executable code.

This is your executable code. % (example >

Figure 2-1. Flowchart of C-SCPI Process

Chapter 2

17

Using Compiled SCPI

Creating Source Code

This section describes a C source program with C-SCPI commands. As an
experienced C programmer, you are already familiar with using the C
language. Now, you can add C-SCPI commands to your program to achieve
high throughput from your register-based V X1 instruments. Y ou can use the
same syntax to operate your HP-1B and message based devices also. The
discussion revolves around a short, but reasonably typical C program named
sourcel. cs. Thesour cel. cs program, like al the examplesin this
guide, islocated in the directory /usr/hp75000/demos/cscpi. Once you have
copied the sample program into your own directory, you can treat it asyou
would any C source program. Thesour cel. cs program is shown below
for the discussion in this chapter.

Thesour cel. ¢s program uses C-SCPI to send SCPI commands to set the
voltmeter for DC Voltage, and read the DC Voltage. The voltage is printed
using thepri nt f function.

Gi ncl ude <stdi o. h> /* include standard C runti ne */\
#i ncl ude <stdlib. h> /* header files and the C SCPl */
#i ncl ude <cscpi. h> /* header file */

INST_DECL(vm,”"E1411B",REGISTER); /* global declaration of E1411B*/
[* instrument, register mode */
void main(){
float vm_dc;
float numb1=2.0;

INST_STARTUP(); /* initialize instrument */

[* operating system *
INST_OPEN(vm,"vxi,24"); /* open voltmeter at Logical */

[* Address 24 *
if (vm == 0){ /* check to see if open failed */

printf(“open failed on vm\n”);

printf(*cscpi open error number: %d\n”, cscpi_open_error);

exit(1);
}
INST_SEND(vm,"CONF:VOLT:DC %f”",numb1); /* configure for DC volt */
INST_QUERY(vm,”"READ?","%f",&vm_dc); I*query for DC volt reading*/
printf(“DC Voltage is: %f\n",vm_dc); /* print the voltage */
exit(0);

\ /

18 Chapter2

Using Compiled SCPI

Defining the C-SCPI Commands

Using C-SCPI commandsin your C program allowsyou to program at ahigh-

level instead of performing register reads and writes. Refer to the “Compiled
SCPI Command Reference” section later in this guide for a complete list and
description of the C-SCPI commands. The following list describes the
C-SCPI commands used in theur cel. cs program:

« Header File - provides function prototype and variable typing
information that will be used by C-SCPI commands.

#i ncl ude <cscpi . h>

« Instrument Declaration - makes your instrument declaration
using thel NST_DECL command. This declarem for
you as typd NST. | NST_DECL may be a global or local declaration.

INST_DECL(vm,”"E1411",REGISTER

* Instrument Initialization - initializes your instruments using C-SCPI
commandsl NST_STARTUP starts the instrument register-based
operating system. It must be executed before C-SCPI commands,
exceptl NST_DECL. | NST_OPEN initializes your instrument and
instrument driver. It must be executed aftdlST _STARTUP and
before other instrument commands.

| NST_STARTUP();
INST_OPEN (vm,"vxi,24");

* Instrument Programming Commands - send commands to your
instruments, and query for the results using standard SCPI commands
with the most commonly used C-SCPI commahd#¢S§T SEND and
| NST_QUERY.

INST_SEND(vm,”"CONF:VOLT:DC %f",numb1l);
INST_QUERY(vm,”"READ?","%f",&vm_dc);

Chapter 2 19

Using Compiled SCPI

Running the C-SCPI Preprocessor

This section provides a guide to running the C-SCPI preprocessor.
Figure 2-2 displays the preprocessor process.

To run the C-SCPI preprocessor, type the following at the command prompt:

cscpi pp sourcel.cs > sourcel.c

main ()

INST_DECL(vm,”"E1411B",

REGISTER);

INST_STARTUP(); C-SCPI
INST_OPEN(vm,"vxi,24") Preprocessor
}

C Code (ready for the compiler)
> to create an object file

Language Tables

Figure 2-2. C-SCPI Preprocessor Process

C-SCPI commands are preprocessed and translated into ANSI C function
calls. Figure 2-3 displays a sample of the ANSI C source code

(sour cel. c¢s) with C-SCPI commands, and the trandlation of the C-SCPI
commands (sour cel. ¢) into ANSI C function calls after running the
preprocessor. The resulting ANSI C file contains code generated by the
C-SCPI preprocessor, and is not intended to be modified by the user.
However, line mapping information in the resulting ANSI C file will cause
the C compiler to reference the original sourcefile (e.g., sour cel. cs) for
any errors or warnings that you may receive.

20 Chapter2

Using Compiled SCPI

C-SCPI Source Code

Preprocessor Translated Source Code

INST_DECL(vm,”"E1411B",REGISTER); QNST vm; /*name E1411B, mode REGISTER*/

)

INST_STARTUP() (os_init()’ /* STARTUP */
INST_OPEN(vm,"vxi,24"); {extern vm_header_fn();
vm=0s_open(“vxi,24”,vm_header_fn);}

INST_SEND(vm,”"CONF:VOLT:DC %f",numb1l);

{{struct {short sub1;

char sub_pad[2];short p1_type;

char p1_type_pad|[2];long p1[2];

short p2_type;char p2_type_pad[2];

long p2[2];short p3_type;char
p3_type_pad[2];long p3[1]}in_;

#line 30 “sourcel.cs” in_.sub1=0;

#line 30 “sourcel.cs” in_.pl type=0;
((HPSL_FLOAT32%)in_p1)-> num=(humb1l);
#line 30 “sourcel.cs”((HPSL_FLOAT32*)
in_p1)->suffix=0;

#line 30 “sourcel.cs” in_.p2_type=-1;

#line 30 “sourcel.cs” in_.p3_type=-1;

#line 30 “sourcel.cs”{extern
vm_conf();instr_send(vm,vm_conf,&in_);}}}

)
)
N

{{struct {long p1[3];}out_;

if

-

#line 31 “sourcel.cs’{extern

vm_read_q();if

(instr_query(vm,vm_read_(q,(void*)0,
&out)

#line 31 “sourcel.cs”

(*HPSL_GENERIC*)out_p1.formatter)
#line 31 “sourcel.cs”
(*(*HPSL_GENERIC*)out_p1.formatter)
(&vm_dc,
&(*(HPSL_GENERIC*)out_p1l.length,(void*)

L

Figure 2-3. C-CSPI Source Code and Preprocessor Translated Code

Chapter 2

21

Using Compiled SCPI

Compiling/Linking your Code

This section explains how to compile and link your source code to create an
executablefile. When creating your executablefile, you can compileand link
in one or two steps as described below. For additional information on
compiling and linking programs, refer to your C compiler’s manuals.
Figure 2-4 displays the compile and link process.

e Compiling. During this step the C compiler converts the C source
file(s) to anobject file. An object file contains binary code, but it is not
in executable form. To compile your program, type the following at the
command prompt:

gcc -c [-g] -mthreads sourcel.c
Comments

-- The-c opti on creates an object file called sourcel.o

-- The[-g] opti on indicates to the compiler that the source should
be compiled with information so a debugger may be used (this is
optional)

-- The-nt hreads opti on causes the multi-threaded versions of
standard functions (likeal | oc andpri nt f) to be used rather
than the single-threaded versions

-- The-1 opti on searches the specified directory path for additional
include files

-- For troubleshooting Compile errors, see Chapter 4, “Troubleshooting
Compiled SCPI”

22 Chapter2

Using Compiled SCPI

From the C-SCPI C Code (ready for the Object Code (ready for Executable Code
Preprocessor - Compiler) to create an the Linker) to create an (ready to run)
sourcel.c object file executable code

!
v

Compiler Linker
Standard C Library I
math library

HP Standard Instrument
Command Library (SICL)

C-SCPI Library
Instrument Drivers

Figure 2-4. Compile and Link Process

« Linking. During this step the linker takes the object file created during
compilation, combined with standard libraries, plus other object files
and libraries you specify, and creates an executable file.

To link your program, type the following at the command prompt:

gcc [-g] -nmthreads -o sourcel sourcel.o
-l cscpi -Isicl

Comments

-- Thecscpi library must precede thsicl library when linking your
program

-- The- o opti on creates an executable file called sourcel rather
than the default a.out

-- The-1 optionis used to link in the Compiled SCPI library and
the SICL library

-- For troubleshooting Link errors, see Chapter 4, “Troubleshooting
Compiled SCPI”

Chapter 2 23

Using Compiled SCPI

e Compiling/Linkingin One Sep. You can also compile and link your
program in one step. To compile/link in one step, type the following at
the command prompt:

gcc [-g] -nthreads -o sourcel sourcel.c
-l cscpi -lsicl

Comments

-- This will create the executable filgpur cel

-- For troubleshooting compile/link errors, see Chapter 4,
“Troubleshooting Compiled SCPI”

Using Libraries A library is a set of commonly used functions that have been gathered into
one place. The library functions are already assembled or compiled to object
code. They are referenced by the linker to create an executable file.

In addition to the C library, you need the following libraries to compile your
C-SCPI programs:

cscpi The Compiled SCPI Library provides access to the instrument
drivers for all SCPI commands. Additionally, it provides the
instrument environment necessary to interface between your
computer’s operating system and the instrument drivers.

sicl The Standard Instrument Control Library provides a modular
instrument communications library that works with a variety of
computer architectures, 1/O interfaces, and operating systems.
By using this library, C-SCPI remains independent of Input/
Output machine specific information.

24 Chapter 2

List compiler name
Set compiler flags

List Link editor name
Set linker flags

List object file(s)

Define program name ———p PROGRAM = sourcel

Define name of program——————» $(PROGRAM : $(OBJS) $(LIBS)

Using Compiled SCPI

Executing Your Program

To execute your program, type the following at the command prompt:

sourcel

The result of executing this program is as follows:

DC Vol tage is: 1.86321

Using M akefiles

Using make, you can create a makefile to ease compiling and linking
programs into one executable file. For more information on how to use the
make command, refer to the Lynx manuals. Thefollowing isan example of a
simple makefile to compile/link the C-SCPI program sour cel. cs.

4 A

— > CC = gcc
_—> CFLAGS=-c [-g] -nthreads

— > LD = gcc
L LDFLAGS = [-g] -nthreads

—_) oBJS = sourcel.o

$(LD) $(LDFLAGS) $(OBJS) $(LIBS)

-l cscpi -lsicl
-0 $(PROGRAM
Define name of source __y, sourcel.c: sourcel.cs
program cscpi pp sourcel.cs > sourcel.c
k sourcel.o: sourcel.c j
Note aTAB must precede $(LD) and cscpi pp lines.

Chapter 2 25

Note

Using Compiled SCPI

Thisisavery simple makefile. If your system has more than one C-SCPI
program, then you may want to use the SUFFI X option of makefile.

This option tells the make command how to convert your C-SCPI programs
(. cs files) into C programs(. c files). Thereare anumber of waysto do this.
The example below is one of those ways. It tells make how to convert your

. ¢s filesinto. c files, without mentioning any specific program name.

Add the following two lines to your makefile to convert C-SCPI programs
(. cs files) into C programs (. c files):

SUFFI XES: . CS
cs.cC:; cscpi pp $<> $*.c

A TAB must precedecscpi pp $<> $*.c

By putting these two lines at the beginning of your makefile, you would not

need the lines that “Define name of source program” in the previous example.
This approach usesffix rulesto accomplish the C-SCPI preprocessing step.
The makefile in the examples directory uses this approach to compile C-SCPI

example code.

26 Chapter2

Using Compiled SCPI
Preprocessor Options

Preprocessor Options

This section contains a short description of the C-SCPI preprocessor
command and its options.

The Compiled SCPI Preprocessor Command
When using C-SCPI, the preprocessor command is as follows:
Options to the Source code ready to run
preprocessor command through your C compiler
I
v v

cscpipp [-f block file] [-i driver] file.cs > file.c

Your C program ready to run
through the preprocessor

Thetext in brackets ([]) are options discussed in the next section.

Soring Block Data in a Separ ate File (The -f Option)

When using SCPI commandsthat require block datato be sent to aninstrument,
the-f opt i on can be used with the C-SCPI preprocessor to store this block
datain afile outside the C program. This helps keep the size of the C program
down, the speed of the compilation up, and alowsfor asmaller executablefile.
This option is usualy only needed if you have alot of block data.

Preprocessor The C-SCPI preprocessor command withthe-f opti on can beused as
Command with follows:
-f Option

cscpi pp -f exanpl e.dat exanple.cs > exanple.c

Where-f exanpl e. dat exanpl e. cs specifiesthat al block datain the
program called exanpl e. cs isto be stored in thefile cal exanpl e. dat
when the preprocessor runs. The resulting C program is caled exanpl e. c.

See Chapter 3, “Programming with Compiled SCPI” for a more detailed
example program using thd opti on.

Chapter 2 27

Example Program

exanpl e. cs

Using Compiled SCPI
Preprocessor Options

The following program segment contains a SCPI command that sends block
datato an instrument. Whenthe- f opt i on isused with the C-SCPI
preprocessor (as shown in the previous section), the datawill be stored in the
file specified in the command line.

Additionally, in order to get the data when you run your program, you must
open thefile that contains the block data and assign it to the
cscpi _dat afi | e pointer (shown below).

KFI LE *cscpi _datafile;/*assign pointer for data retrieval */\

assign cscpi_datafile pointer

rm.i n()

{

/*open file and assign to cscpi_datafile*/
open file

cscpi_datafile = fopen (“example.dat”, “rb™); - ":‘2‘:) gisnstigr“

INST_SEND (digio, “"SOURCE:DIGITAL:TRACE:DATA first_block,
#210ABCDEFGHIJ");

L %
The |l NST_SEND command has a SCPI command that sends block datato
the digio. When the C-SCPI preprocessor isrun withthe-f opti on, the

datathat is stored in the exanpl e. dat file. See the HP E1330B Digital
I/O User’'s Manuafor more information on the SCPI command.

In order to read the block datawhen the program isexecuted, thefile containing
the block data must be opened and assigned tothecscpi _dat afil e
pointer. Therefore, in the example above, the file called exanpl e. dat is
opened and assigned to the pointer cscpi _dat afi | e.

28 Chapter2

Using Compiled SCPI
Preprocessor Options

Note C-SCPI requires the name of the pointer to the data file to be
cscpi _dat af i | e. The name of the file, however, is defined by the user.

Using SCPI Only Files (The-i Option)

The-i opti on takesafilethat contains only SCPI commands and
convertsit into a C function. The C-SCPI preprocessor treats each SCPI
command in the filelike an | NST_SEND.

When using the C-SCPI -1 opt i on, the following restrictions apply:

-- All SCPI commands must be for the same instrument.
-- SCPI query commands are NOT allowed.
-- Any text that is not a SCPI command is NOT allowed (for example,

comments).
Preprocessor The C-SCPI preprocessor command withthe-i opti on can beused as
Command with follows:

-i Option _ _ L .
cscpipp -i E1411B scpifile.cs > scpifile.c

Where-i E1411B scpifil e. cs specifiesthat thefilescpi fil e. cs
contains only SCPI commands for amultimeter. Each command istreated as
aC-SCPI | NST_SEND. Theresulting C programiscalledscpi fil e. c.

To create your executable code, you must run the C-SCPI preprocessor on
each file, compile each file, and then link the files together. An example
follows:

* Run the C-SCPI Preprocessor:

cscpipp -i E1411B scpifile.cs > scpifile.c
cscpi pp exanple.cs > exanple.c

« Compile each file:

gcc -c [-g] -nmthreads exanple.c
gcc -c [-g] -mhreads scpifile.c

* Link the files:

gcc [-g] -nthreads -o exanple exanple.o scpifile.o
-l cscpi -lsicl

Chapter 2 29

Example Programs

scpifile.cs

Using Compiled SCPI
Preprocessor Options

This section showstwo program segments. Thefirstisafile segment that has
SCPI commands for the HP E1411B Multimeter. The second program
segment shows amain program that uses the first file which contains only
SCPI commands. The C-SCPI -i opt i on isused with the first file to
convert it into a C function of instrument sends.

The following program segment shows a file containing strictly SCPI
commands for the HP E1411B Multimeter. When this file runs with the
-i option,afunctioncalledscpi fil e isgenerated (same asthefile
name but without the extension).

f* RST I

*CLR
FUNC VOLT: AC
VOLT: RANGE 8

- /

30 Chapter2

example.cs

- Y

Using Compiled SCPI
Preprocessor Options

This program segment calls the function generated by the C-SCPI
preprocessor withthe-i opt i on. Theinstrument driver name that was
specified withthe-i opti on isused as the pass parameter when calling
the function.

~

#i ncl ude <stdio. h>
#i ncl ude <cscpi . h>

extern void scpifile(INST_PARAM(vm, “E1411B”, REGISTER));

main()
{
INST_DECL (vm, “E1411B", REGISTER);
INST_STARTUP ();
INST_OPEN (vm, “vxi,24");

scpifile (vm);

Each file must be run through the C-SCPI preprocessor, compiled, and then
linked. When thefirst file, scpi fi |l e. cs, isrun through the C-SCPI
preprocessor withthe-i opti on, thescpi fi | e functionis generated.
When the main program calls the function, the instrument driver name
specified when the preprocessor was run is used.

Chapter 2 31

Advantages of
Using the Interactive
Functions

Using Compiled SCPI
Interactive Functions

| nter active Functions

The interactive functions allow you to specify your SCPI command at run
timeinstead of in your source code. With other C-SCPI commands you have
to specify the SCPI command in the argument list. For example,
INST_SEND(id, “*RST") containsthe SCPI command *RST. With the
INST_SENDcommand, the SCPI command must bein your program before
the C-SCPI preprocessor runs. With the interactive functions, however, you
can prompt the user to enter the SCPI command at run time.

Several advantages of using the interactive functions include the following:

* You can enter the SCPI command at run time instead of in your source
code.

« You can use the interactive functions as a means of debugging your
SCPI commands.

The only disadvantage of using the interactive functions is that error checking
and parsing of SCPI commands is not done until run time (instead of checked
when the C-SCPI preprocessor runs). This, in turn, slows down the program
execution speed.

Using Interactive Functions

There are three interactive functions available with C-SCPI:

Thecscpi _exe function uses a string variable for input to the function. The
results are stored in the address specified. With this function you have to
specify the length of the SCPI command string and the size of the location
used to store the results. The following illustrates the function call:

Gnstrument id) (Iength of SCPI command)

cscpi _exe (vm command, strlen(command), result, sizeof(result));

(string for SCPI command) Gocation to store resuID

32 Chapter 2

Using Compiled SCPI
Interactive Functions

Thecscpi _exe_st reamfunction allows you to use streams as the file
input and output. The following illustrates the function call:

(stream used for inpuD

v

cscpi _exe_stream (vm fin, fout);

Gtream used for result9

Thecscpi _exe_fil des function uses afile descriptor asfile input and
output. The following illustrates the function call:

@escriptor used for inpuD

cscpi _exe fildes (vm in, out);

T

@escriptor used for resu@

See Chapter 5, “Compiled SCPI Command Reference” for more information
on the C-SCPI interactive functions.

Chapter 2 33

Using Compiled SCPI
Interactive Functions

Programming with I nteractive Functions

Since the interactive functions allow you to enter the SCPI commands at run
time, you can write your program to prompt the user for a SCPlI command at
run time. An example program using thecscpi _exe function is described
in this section. This example is stored in the /usr/hp75000/demos/cscpi
directory. See Chapter 5, “Compiled SCPI Command Reference” for
examples of the other two interactive functions.

Equipment Needed -- HP Embedded VXI Controller
-- HP VXI C-Size Mainframe
-- HP E1411B Digital Multimeter

Program Description This program sets up and initializes the HP E1411B Multimeter. It prompts
the user for an address and loops prompting for SCPI commands. The SCPI
commands are parsed by the Controller and executed by the HP E1411B
Multimeter. When a null string is entered, the loop is exited.

This program demonstrates how you can use the C-SCPI execute function in
an interactive mode. See Chapter 5, “Compiled SCPI Command Reference”
for more details on the C-SCPI execute call.

Program Listin
: ’ mexarrpl e6. cs*/ \
[*This is a G SCPlI exanple of using the interactive node. The */
[*programis witten to pronpt the user for the SCPl command. */
/*The command is then executed using the cscpi _exe function. */

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <cscpi. h>

#define LENGTH 1000 /*maxi mum | ength of SCPI command & result*/
INST_DECL (vm, “E1411B”, REGISTER);/*declaration for voltmeter*/

main()

{

char command [LENGTH]; /*string variable for SCPI command*/
char result [LENGTH]J; [*string variable for result*/ /

Continued on Next Page

34 Chapter2

Using Compiled SCPI
Interactive Functions

//*prorrpt user to enter logical address of nultineter*/
puts (“Enter the logical address of the vm, for example,”
“vxi,24:\n");
gets (command);

INST_STARTUP (); [*start operating system*/
INST_OPEN (vm, command); [*initialize multimeter*/

/%if O returned, open failed and print message*/
if (lvm)

fprintf (stderr, “vm at %s failed to open\n”,command);
exit (1);
}

[*loop to enter SCPI commands*/

for ()
{
printf (“Enter a SCPI command for the multimeter. Hit return “
"to exit\n");
while (Igets(command)) /*loop until get a nonzero size */
; /*gets may terminate on interrupt*/

if ("*command) [*caused by the command*/
break;
result[0] = 0; [*clear result string*/

[*C-SCPI call to execute the SCPI command*/
cscpi_exe (vm, command, strlien(command),result, sizeof(result));

[*if you have a result, print it*/
if (result[0])
printf (“Result : %s”, result);
}
printf (“DONE\n");
exit (0);

N\

~

J

Note

The char array returned for result includes a new line at the end of the array.
Therefore, you do not have to include a new line when printing the results.

Chapter 2

35

Using Compiled SCPI
Overlapped Mode

Overlapped Mode

The overlapped mode is a mode of operation which allows you to overlap
commands addressed to different instruments so that they are executed in
parallel. The default mode (overlapped off) does sequential programming,
that is, one command is started after the previous command has finished.
With the overlapped mode on, however, you can take advantage of long setup
times and allow commands to overlap, thereby, achieving higher throughput.

Turning overlapped mode on and off only applies to register-based
instruments. M essage-based instruments automatically operatein overlapped
mode because they have their own processor.

While using the overlapped mode, certain commands can be executed in
paralel. When the command is executed, it begins the instrument function
and completes it some time later with an interrupt service routine.
Meanwhile, other commands may begin execution without having to wait for
the instrument function to complete.

The overlapped mode can be turned on or off in your C program. By default
this mode is off. See “Using the Overlapped Mode” on page 40 for a
discussion on the C-SCPI function that turns the overlapped mode on or off.

Determining if you Should use the Overlapped M ode

The overlapped mode can provide an increase in system throughput. Use
overlapped mode for either of the following conditions:

-- Your configuration requires commands to be executed in parallel.
OR
-- You need an increase in system throughput.

See “Controlling Overlapped Execution” on page 43 for a description of
programming technigues you can use.

36 Chapter 2

Using Compiled SCPI
Overlapped Mode

Configurations Overlapped mode must be used when you have a configuration that requires

Requiring SCPI commands for two or more instruments to be executed in paralel. An

Overlapped Mode example of this configuration might be if you want to scan several channels
and make measurements on each channel, where the instruments are set up as
two separate instruments (not a scanning voltmeter). In this configuration, a
switch should close and wait for a voltmeter compl ete (indicating that the
voltmeter made its measurement). Then the switch should close the next
channel and the process should repeat. However, since the sWNEA's
command is executed later in the program, it will never be executed without
overlapped mode ON. This is because the voltmeter's measurement
command is never finished.

The following program segment shows this configuration with overlapped
mode OFF:

4 INST_SEND (vm, “TRIG:SOUR EXT"); \
INST_SEND (vm, “CONF:VOLT:DC 0.825,MAX");

INST_SEND (sw, “TRIG:SOUR EXT”);

INST_SEND (sw, “ROUT:SCAN (@100:103)");

INST_QUERY (vm, “READ?” *, &result);

INST_SEND (sw, “INIT”);

/

Noticethat the switch | NI T isafter the voltmeter READ. Since the voltmeter
reguires an external trigger, the READ command hangs becausethe | NI T
command is what causes the voltmeter trigger to occur. However, thel NI T
command is never reached.

Now, if you turn overlapped mode ON, this configuration should work.

Throughput and the Overlapped M ode

Sincethe overlapped mode alows several commandsto executein parallel, the
system throughput can be higher. This section describes why the throughput
can be higher with overlapped mode ON and compares two C-SCPI
programming segments. One program executes the commands sequentialy,
and the other program executes the commands while in the overlapped mode.

Chapter 2 37

Comparing Two
Programs

Set up source

Close switch

Configure voltmeter ———— INST_SEND (vm, “CONF:VOLT: DC 7.27, MAX");

Measure and
return voltage

Configure voltmeter —— INST_SEND (vm, “CONF:VOLT: DC 7.27, MAX");

Set up source
Close switch

Query operation
complete

Measure and
return voltage

— INST_QUERY (sour, “*OPC?", “%d”, &result);

Using Compiled SCPI
Overlapped Mode

Both programs shown in Figure 2-5 are making the same measurement. The

second program isin overlgpped mode and the order of command execution is
different. See “Programming for Efficiency” on page 45 for a description of how
to determine the order of your commands while using the overlapped mode.

The first program in Figure 2-5 uses sequential commands and sends the
commands in a logical order for execution. The controller waits until each
command is done before beginning the next command. These commands are
executed sequentially.

The second program in Figure 2-5 uses the overlapped mode and sends all of
the setup commands first. If these commands are overlapping commands and
sent to different instruments, they are executed in parallel. Once the setup
commands are sertOPC? commands are sent to make sure all of the SCPI
commands are done before taking a measurement.

/ Sequential \

cscpi _overlap (0);

s INST_SEND (sour, “SOUR:VOLT1 2.7000");
wait for command to complete
_— > INST_SEND (sw, “ROUT:CLOS (@101)");
wait for command to complete

wait for command to complete
_— > KINST_QUERY (vm, “READ?", “%f", &storage);

J
/ Overlapped \

cscpi_overlap (1);

— » | INST_SEND (sour, “SOUR:VOLT1 2.7000");
— 5 | INST_SEND (sw, “ROUT:CLOS (@101)");
—> | INST_QUERY (sw, “*OPC?", “%d”, &result);

L » | INST_QUERY (vm, “*OPC?", “%d", &result);
——> \UNST_QUERY (vm, "READ?", "%f", &storage); J

Figure 2-5. Programming Code, Overlapped vs. Non-Overlapped

38 Chapter2

\4

D -]

Using Compiled SCPI
Overlapped Mode

Whilethe program segmentsarelisted in Figure 2-5, Figure 2-6 illustratesthe
time difference between the sequential and overlapped programs. In the
sequential program version, with overlapped mode OFF, each command will
wait for completion before executing the next line. With MESSAGE
configurations, however, you must include a* OPC? command to ensure the
commands are completed.

Sequential Programming Overlapping Programming

Set up source Configure voltmeter ‘

Set up source

Close switch

Wait for command to complete

‘ Query operation complete ‘

Close switch
‘ Query operation complete ‘
Query operation complete
Wait for command to complete Measure and return voltage

Configure voltmeter

Wait for command to complete

Measure and return voltage

Figure 2-6. Time for Sequential and Overlapped Programs

Chapter 2 39

Using Compiled SCPI
Overlapped Mode

Overlapped Command

An overlapped command is a command that allows other commandsto be
executed at the same time. Some commands can be overlapped, and some can
not. Some commands will not allow any other command to be executed after
the command has garted. Therefore, we have two types of commands:

* A NON-OVERLAPPING command is a command that does not allow
any other command to be executed after the command has begun. The
non-overlapping command must complete execution before the next
command can start.

* An OVERLAPPING command is a command that allows other
commands (overlapping or non-overlapping) to other instruments to be
executed at the same time. An overlapping command continues
execution when an interrupt from the hardware card is delivered to the
test program. Overlapping commands ONLY overlap when the
overlapped mode in turned ON.

To find out which commands are overlapping and which are non-overlapping,
see Appendix A, “Online Documentation” for more information.

Using the Overlapped Mode

To use the overlapped mode you simply place a C-SCPI function call in your
C program to turn the mode ON or OFF. Default mode is overlapped OFF.
There are two C-SCPI functions that are associated with the overlapped
mode:

e cscpi _overl ap
e cscpi _get _overlap

Each of these C-SCPI functions is discussed in the sections following. Make
sure you read the “Controlling Overlapped Execution” on page 43 before
attempting to use the overlapped mode.

40 Chapter 2

Using Compiled SCPI
Overlapped Mode

Turning Overlapped Thecscpi _over | ap function turns the overlapped mode ON or OFF.

Mode ON or OFF

Note

By default, this mode is turned OFF. If you use a nonzero integer asthe
parameter, the function turns overlapped mode ON. A 0 turns overlapped
mode OFF. The parameter is of typei nt . The following program segment
shows how this function can be used in your C program:

/ variable type int

i nt node;
node = 1;

1 turns overlapped ON
0 turns overlapped OFF

The 1 turns overlap ON (0 would indicate OFF). See Chapter 5 for more
information onthecscpi _over |l ap call.

cscpi _overl ap (node);

Turning overlapped mode OFF does not guarantee that interrupts from
incomplete commands are not generated. If overlapping commands were
executed while overlapped mode was ON, additional interrupts can be
generated if those commands have not completed yet.

Chapter 2 41

Determining if
Overlapped Mode is
ON or OFF

Using Compiled SCPI
Overlapped Mode

Thecscpi _get over | ap function returns an integer that tellsif the
overlapped mode is ON or OFF. If a1 isreturned, overlapped mode is ON.
A 0 indicatesthat overlapped mode is OFF. The following program segment
shows how you can store the current status of overlapped mode, turn
overlapped ON, perform a function, and then return overlapped mode to the
same status it was before the function:

location to store old mode

i nt ol d_node;
i nt new _node=1;

<_store old mode and

ol d_nopde = cscpi_get _overlap (); furn overlap mode ON

cscpi _overl ap(new _node) ;

cscpi _overlap (ol d_node);

put mode back to what
it was before function

The returned mode tells if overlapped mode is ON or OFF. Thismodeis
stored and the overlapped mode is turned ON. Once the function is done,
overlapped mode is put back to whatever it was before the function began.
See Chapter 5 for more information onthecscpi _get _over| ap cal.

42 Chapter2

Using Compiled SCPI
Overlapped Mode

Controlling Overlapped Execution

Most C-SCPI instrument drivers use interrupts to perform their tasks. When
overlapped mode is on, these interrupts may interrupt the execution of your
test program. The following example illustrates how interrupts could occur:

Configure Voltmet
ontigure VOIMeIer ——— [|NST_SEND (vm, “CONF:VOLT: DC 7.27, MAX"):
Setup source. —3 | |NST_SEND (sour, “SOUR:VOLT1 2.7000";
Close switth —— | INST_SEND (sw, “ROUT:CLOS (@101)");

YOUR CODE HERE

~

J

mz —

Controller

Call Multimeter

Multimeter Source Switch

) Configure
Driver —p| Multimeter

Call Source Driver
Set up
Call Switch Driver ———— Source o
Close
_Interrupt Switch
YOUR CODE Interrupt Interrupt
Interrupt Interrupt

Figure 2-7. When an Interrupt Occurs

If you have any problems with your code because of interrupts, we
recommend you do one of the following:

-- Leave overlapped mode in its default mode (OFF).
-- Use HP SICL function calls to temporarily block interrupts.
-- Use* OPC? to finish overlapping commands.

The last two items are discussed in the subsections that follow.

Chapter 2

43

Using Compiled SCPI
Overlapped Mode

Use the HP SICL Y ou can place HP SICL calls around C code calls to temporarily block
Function Calls to interrupts. Once you complete your code, you can re-enable interrupts. The
Temporarily Block following example places SICL function calls before and after the user code:
Interrupts

INST_SEND (vm, “CONF:VOLT: DC 7.27, MAX");
INST_SEND (sour, “SOUR:VOLT1 2.7000");
INST_SEND (sw, “ROUT:CLOS (@101)");
iintroff ();

YOUR CODE HERE
iintron ();

interrupt off —p

interrupt on ——p

See the HP SICL documentation for additiona information on these
commands.

Use *OPC?to Finish If you are in the overlapped mode you can use * OPC? after the SCPI
SCPICommands command to ensure the command has finished execution. The following
example uses * OPC? to ensure SCPI commands are done:

mt result; \

INST_SEND (vm, “CONF:VOLT: DC 7.27, MAX");
INST_SEND (sour, “SOUR:VOLT1 2.7000");
INST_SEND (sw, “ROUT:CLOS (@101)");
INST_QUERY (sw, “*OPC?", “%d", &result);
INST_QUERY (sour, ““OPC?","%d", &result);
INST_QUERY (vm, “*“OPC?", “%d", &result);
printf (“This is a test, send %s\n”, text);

\ Y,

Notice that the write to terminal is after all of the* OPC? commands.

44 Chapter2

Using Compiled SCPI
Overlapped Mode

Programming for Efficiency

Once you have decided to use the overlapped mode, you can make your
program more efficient by doing the following:

-- Change the order of the SCPI commands to increase your system
throughput.

-- Use* OPC? commands to ensure commands have completed.

Each of these items is discussed in the subsections following.

Determining the To obtain optimum throughput, you must write your program so that

Order of your commands are executed in aparticular order. Use the following procedureto
Overlapping tune your program to get the best throughput:

Commands

1. Determineif the command is overlapping or non-overlapping.
See Appendix A, “Online Documentation” for the specific instrument.

2. Determine which overlapping commands take the most time. See the
“System Characteristics” section of thi® 75000 Family of VXI
Products catalog for a list of card execution times.

3. Program the overlapping commands that take the most time first.

Note You will only gain throughput by overlapping commands to different
instruments.

Suppose you have three commands for three different instruments and one is
non-overlapping and the other two are overlapping. Send the overlapping
command that takes the most time first. Then send the other overlapping
command and finally the non-overlapping command.

Chapter 2 45

Using the *OPC?
Commands

Note

Using Compiled SCPI
Overlapped Mode

In order to guarantee that commands have finished before you try to make a
measurement, use the operation complete query command (* OPC?). By
using this command you can avoid incorrect data. The following program
segment is an example of using * OPC?.

int result;
INST_SEND (sw1, “CLOSE (@101)");
INST_QUERY (sw1, “*OPC?", “%d", &result);

The* WAl command takes dlightly less time than the * OPC? command.
However, * WAl does not have the desired effect on MESSAGE instruments.
Therefore, * OPC? is recommended for portability.

46 Chapter2

Programming with Compiled SCPI

Programming with Compiled SCPI

Thischapter provides some C-SCPI programming examplesto help you write
your own programs with C-SCPI. Each program contains alist of equipment
needed, program description, and a program listing. Y ou can copy any of
these examplesinto your own directory and make changes. The examplesin
this chapter are stored in the /usr /hp75000/demos/cscpi directory.

This chapter contains the following sections:

-- Looking at an Example System Configuration

-- Providing an Error Routine

-- Programming with a Scanning Multimeter

-- Programming with an External File

-- Programming with a C-SCPI| Parameter List

-- Storing Block Datain a Separate File (the -f Option)
-- Using C-SCPI in the Interactive Mode

-- Triggering with the HP Pentium Controller

L ooking at an Example System Configuration

The configuration shown in this section can be used with the programming
examplesin this chapter. See the C-Sze VXlbus Systems Installation and
Getting Sarted Guide and the individual instrument user’s manuals for
wiring and connection information.

48 Chapter 3

Programming with Compiled SCPI

Embedded VXI
Controller

C-Size VXIbus

Instrument
C-Size VXIbus
Instrument
C-Size VXIbus
Instrument
Embedded
VXI Controller
q
SN ima]]]) I
?L@ © o
@j @ H o
IRl o
©
o (4] o
© @
0@|@) -
2 o |] o
i I
aflll 8 .
o O O O
@
] e L Sl
=
U, @, |C |)))
] [

E6232A Figl

Figure 3-1. Embedded Controller Example Configuration

Chapter 3 49

Programming with Compiled SCPI

Providing an Error Routine

C-SCPI dlowsfor error trapping of instrument run-time errors. Every timea
run-time error is put into an instrument’s error queuectd®pi _error
function is called. Thescpi _err or function shipped does nothing. You
can, however, write your owascpi _err or function and link it into your
main program. You can also use the example error routine that’s been
provided in theusr/hp75000/demos/cscpi directory. To use the example
error routine, do the following:

1. Copy thecscpi _error. c routine into your own working directory.

2. Compile both your file and thescpi _error. c file.

3. Link the files. For example:

gcc [-g] -nthreads -o exanple exanple.o
cscpi_error.o -lcscpi -Ilsicl

Now, when you execute your program and a run-time error is put into any
instrument’s error queue, the newcpi _er r or function will be called.

Program Listing //*cscpi _error.c*/ \
/*This routine provides the SCPl error routine for run tine errors.*/
[*Errors in the instrument’s error queue are reported.*/

#include <cscpi.h>
void cscpi_error (INST sicl_inst, int error_number)
{

char string[20]="SYST:ERR?";

char result[255];

cscpi_exe(sicl_inst,string,strlen(string),result,sizeof(result));

printf “ERROR: %s”",result);
exit(1);
}

-)

See “Trapping Errors with cscpi_error” in Chapter 4 for more information on
thecscpi _error routine.

50 Chapter 3

Programming with Compiled SCPI

Programming with a Scanning M ultimeter

This programming example shows how you can use C-SCPI macro
commands to set up a measurement for a scanning voltmeter.
See Chapter 5 for more information on these commands.

Equipment Needed -- Embedded VX1 Controller
-- HP VX1 Mainframe
-- HP E1326B or HP E1411B Multimeter
-- HP E1345A Relay Multiplexer

Program Description This program uses C-SCPI commands to set up a measurement for the
Multimeter and the Relay Multiplexer to make a scanning measurement.

Program Listing

//*exarrpl el.cs*/ \

[/ *Thi s progranm ng exanpl e uses the C SCPI commands to nake a */
/ *measurenent for a scanning voltneter. */

#i ncl ude <stdio. h>
#i ncl ude <math. h>

#i ncl ude <cscpi. h> / *Needed for Preprocessor */
/* commands. */

int testl(void); /*function prototype for testl */
INST_DECL(vm,"E1411",REGISTER); /*declare instrument variable */

main()
{

int fail;

INST_STARTUP(); /* initialize instrument */

/* operating system */
INST_OPEN(vm,"vxi,(24,25)"); [* open scanning meter using *

/* 1411 logical address 24, and */

/* scanner logical address 25 */

_ iftvm) Y,

Continued on Next Page

Chapter 3 51

Programming with Compiled SCPI

}

o

"

printf(“open vm failed, error number: %d\n”,cscpi_open_error);

exit(1);
}
fail = test1(); /* run test using test1() */
[* function */

if (fail) /* check to see if test passed */
{ [* or failed */

printf(“TEST FAILED \n");
}
else
{

printf(“TEST PASSED\n");
}
exit(0);

}

int test1(void) [* a simple test function */

{

#define POINTS 10 /* number of points */
float a[POINTS]; [* define expected points *
float expected[POINTS]={1.0, 1.0, 1.0, 5.0, 5.0, 0.0, 1.0,2.5,

9.0, 0.0};
int fail = O;
inti;

/* query for results and put */
[* into array */
INST_QUERY (vm, “MEAS:VOLT? 10, (@100:109)","%f",&a);

for (i=0;i<POINTS;i++)
{
if (fabs(ali]-expected][i]) > .01)
{
printf(“test point %d failed. Expected %f, measured %f\n”,
i, expected]i], a[i]);
fail=1;
}
}

return fail;

)

52 Chapter 3

Equipment Needed

Program Description

Programming with Compiled SCPI

Programming with an External File

This programming example shows how you can use the C-SCPI

I NST_EXTERN macro command to specify an external declaration. This
command works very similarly to the ANSI C ext er n command. See
Chapter 5 later in this guide for more information on the | NST_EXTERN
command.

-- Embedded V XI Controller
-- HP VXI Mainframe
-- HP E1326B or HP E1411B Multimeter

This program usesthe C-SCPI | NST_EXTERN and ANSI Cext ern
commands. Program example2.cs uses the | NST_EXTERN command to
declare the instrument id, vm, of the HP E1326B or HP E1411B Multimeter
as an external variable. Program example2.cs represents a library where
routines can be added to create your own driver for the Multimeter. This
program needs to be compiled separately from the main program file,
example2a.cs. Program example2a.cs usesthe ANSI C ext er n command
to declarethefunction, t est 1() , asexternal to the program. Once declared
as externa to example2a.cs, then it can be called and executed.

Use the following steps to preprocess, compile, and link these programs.

B Run your C programs through the C-SCPI preprocessor:

cscpi pp exanpl e2.cs > exanpl e2.c
cscpi pp exanpl e2a.cs > exanpl e2a. c

B Compile each file:

gcc -c [-g] -nthreads exanple2.c
gcc -c [-g] -nthreads exanpl e2a.c

B Link thefiles;

gcc [-g] -nthreads -o exanpl e2 exanpl e2.o0
exanpl e2a. o cscpi _error.o -lcscpi -lsicl

Chapter 3 53

Programming with Compiled SCPI

Program Listing

//*exarrpl e2.cs*/
/*Thi s programm ng exanpl e uses the | NST_EXTERN C_SCPI

/*in an array
INST_QUERY (vm, “MEAS:VOLT? 10, (@100:109)","%f",a);

for (i=0;i<POINTS;i++)
{
if (fabs(ali]-expected[i]) > .01)
{
printf(“test point %d failed. Expected %f, measured %f\n”,
i, expected][i], a[i]);
fail=1;
}
}

return fail;

K}

/* variable
testl() [* a simple test function
{
#define POINTS 10 [* number of points
float a[POINTS]; /* define expected points */
float expected[POINTS]={1.0, 1.0, 1.0, 5.0, 5.0, 0.0, 1.0,2.5,
9.0, 0.0}
int fail = 0;
inti;

conmand. */

/* */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <mat h. h>

#i ncl ude <cscpi. h> / *Needed for Preprocessor */

INST_EXTERN(vm,"E1411",REGISTER); [*declare external instrument*/

*/
*/

*/

/* query for results and put */

*/

Continued on Next Page

54

Chapter 3

Programming with Compiled SCPI

-

N

/ *exanpl e2a. cs*/
/*Thi s programm ng exanpl e uses the extern ANSI
/*execute testl() listed on the previous page.

#i ncl ude <stdio. h>
#i ncl ude <math. h>
#i ncl ude <cscpi . h> / *Needed for Preprocessor
/* conmands.
INST_DECL(vm,"E1411",REGISTER); /*declare instrument variable */

extern int test1(); [* declare function from other */

I* file
main()
{
int fail;
INST_STARTUP(); /* initialize instrument os */

INST_OPEN(vm,"vxi,(24,25)"); [* open scanning meter using */
/* 1411 logical address 24, and*/
[* scanner logical address 25 */
if ('vm)
{
printf(*open vm failed, error number: %d\n”, cscpi_open_error);
exit(1);
}
fail = test1(); /* run test using test1() */
* external function
if (fail) I* check to see if test passed */
{ [* or failed
printf(“TEST FAILED \n”);
}

else
{
printf(“TEST PASSED\n");

}
exit(0);

C command to

*/

*

*/

*/
*/

*/
*/

~

Chapter 3

55

Equipment Needed

Program Description

Programming with Compiled SCPI

Programming with a C-SCPI Parameter List

This programming example shows how you can use the C-SCPI

| NST_PARAMmMacro command to pass instrument identifications to
functions. See Chapter 5 for more information on the | NST_PARAMmMmacro
command.

-- Embedded V XI Controller
-- HP VXI Mainframe
-- HP E1326B or HP E1411B 5 1/2-Digit Multimeter

There are two separate files listed on the following pages. The first file,
example3.cs, represents the main program. It usesthe functionslisted in the
second file. The second file, example3a.cs, represents afile of functions that
can be compiled separately from the main program. Thisfile usesthe C-SCPI
I NST_PARAMmMmacro command to pass the instrument declaration to the
functions. More functions can be added to create your own driversfor the HP
Multimeter.

Use the following steps to preprocess, compile and link these programs:

B Run your C programs through the C-SCPI preprocessor:

cscpi pp exanpl e3.cs > exanpl e3.c
cscpi pp exanpl e3a.cs > exanpl e3a. c

B Compile eachfile:

gcc -c [-g] -mthreads exanple3.c
gcc -c [-g] -mthreads exanpl e3a.c

B Link the program files and cscpi_error file:
gcc [-g] -nthreads -o exanpl e3 exanpl e3. 0 exanpl e3a. o
cscpi_error.o -lcscpi -lsicl

See “Overview of C-SCPI” in Chapter 2 for more information on each of
these steps.

56 Chapter 3

Programming with Compiled SCPI

Program Listing

// *exanpl e3. cs*/ \

[/ *Thi s exanpl e shows how you can use a file of your own drivers */
[*for a specific instrument.*/

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <cscpi. h>

#define VM_ADDR “vxi,24"
#define FUNCTION “VOLT:AC”
#define RANGE 8

extern void E1411_func(INST id, char *func);
extern void E1411 volt_range (INST id, double range);
extern float E1411 read (INST id);

main()

{

float answer;
INST_DECL (vm, “E1411", REGISTER);

INST_STARTUP ();
INST_OPEN (vm, VM_ADDRY);

E1411_func (vm, FUNCTION);
E1411 volt_range (vm, RANGE);
answer = E1411 read (vm);
printf (“Answer : %f\n”,answer);

Continued on Next Page

Chapter 3 57

Programming with Compiled SCPI

/l *exanpl e3a. cs*/ \

/*This exanmple is a file of drivers that can be preprocessed and */

/*used as a library of function calls from other C prograns. */
#i ncl ude <cscpi . h> / *Needed for |NST commands */
/*This function can be used to specify the function of the */

[*mul timeter.*/
void E1411 func (INST_PARAM (id, “E1411", REGISTER), char *func)
{
INST_SEND (id, “FUNC %S", func);
}

[*This function can be used to specify the voltage range of */
[*the multimeter.*/
void E1411 volt_range (INST_PARAM (id, “E1411", REGISTER),
double range)
{
INST_SEND (id, “WVOLT:RANGE %f “, range);
}

[*This function can be used to read data from the multimeter. */
float E1411 read (INST_PARAM (id, “E1411", REGISTER))

{

float result;

INST_QUERY (id, “READ?", “%f", &result);
return (result);

}

N /

58 Chapter 3

Programming with Compiled SCPI

Storing Block Data in a Separate File (The -f Option)

This programming example shows how you can usethe-f opti on with
C-SCPI to store block datain a separate file when the C-SCPI preprocessor
runs. Using the-f opt i on reducesthe size and compilation time of your
C program. See Chapter 2 for more information on the operation of the

-f option.

Equipment Needed -- Embedded V XI Controller
-- HP VX1 Mainframe
-- HP E1330B 4-Channel Digital I/0

Program Description This program contains afunction called | oad_t r aces() . Thefollowing
SCPI command sends block data to a defined memory block:

number of bytes
for length

“DIG:TRACE:DATA block1, #3100 . . .”

location to
store data

When this program is preprocessed with the C-SCPI - f opt i on, the block
datawill be stored in a separate file (exanpl e4. dat as shown below):

number of byte
to send

cscpipp -f example4.dat example4.cs > example4.c

Chapter 3 59

Program Listing

Programming with Compiled SCPI

In your program you must also open the file containing the block data and
assignittothecscpi _dat af i | e FILE pointer for dataretrieval. Thisis
shown in the following example.

{

exit (1);
}

f/*exarrpl e4. cs*/
/*Thi s program can be used with the -f option so that the block */
/*data is stored in a separate file by the preprocessor. */

#i ncl ude <stdio. h>
#i ncl ude <cscpi . h>

#define DIG_ADDR *“vxi,144”

INST_DECL (dig, “E1330B”, REGISTER); /*define instrument variable */

FILE *cscpi_datafile; /*must be used as pointer to */
[*file opened for block data */
main ()
{
INST_STARTUP (); [*start operating system */
INST_OPEN (dig, DIG_ADDR); [*initialize digital I/O card*/
[*test to see if INST_OPEN worked, 0 returned in failed*/
if (1dig)
{
printf (“Open FAILED. Error number: %d\n”, cscpi_open_error);
exit (1);
}

[*open data file for block data*/
cscpi_datafile = fopen (“example4.dat”, “rb”);

[*test to see if fopen worked*/
if (Icscpi_datafile)

printf (“Open example4.dat failed\n”);

~

)

Continued on Next Page

60 Chapter 3

Programming with Compiled SCPI

/ [*call function with block data*/
| oad_traces ();

/*put your test here*/
exit (0);

/*function to |oad traces*/

| oad_traces ()

{
/*This function generates code to send data to an instrunment.*/
/*When the C SCPlI preprocessor is run, the data is put in the*/
/*file that cscpi_datafile is pointing to.*/

/*set up nenory block to send data*/
INST_SEND (dig, “DIG:TRACE:DEF block1, 1000");
INST_SEND (dig, “DIG:TRACE:DEF block2, 1000");

[*send data to file, must be 100 bytes*/

INST_SEND (dig, “DIG:TRACE:DATA block1, #3100"
“12345678901234567890123456789012345678901234567890"
“12345678901234567890123456789012345678901234567890");

INST_SEND (dig ,”"DIG:TRACE:DATA block2, #3100"
“abcdefghijkimnopgrstuvwxyz012345678901234567890123"
*12345678901234567890123456789012345678901234567890");

~

Chapter 3

61

Programming with Compiled SCPI

Using C-SCPI in the Interactive Mode

Since the interactive functions allow you to enter the SCPI commands at run
time, you can write your program to prompt the user for a SCPlI command at
run time. An example program using thecscpi _exe function is described
in this section. This example is stored in the /usr/hp75000/demos/cscpi

directory. See Chapter 5 for examples of the other two interactive functions.

Equipment Needed -- Embedded V XI Controller

Program Descti

Program Listing

-- HP VXI Mainframe

-- HP E1326B or HP E1411B Digital Multimeter

ption This program sets up and initializes the HP Multimeter. It prompts the user
for an address and loops prompting for SCPI commands. The SCPI
commands are parsed by the Controller and executed by the HP Multimeter.

When anull string is entered, the loop is exited.

This program demonstrates how you can usethe C-SCPI executefunctioninan
interactive mode. See Chapter 5 for more details on the C-SCPI execute call.

//V*exanple

[*This is

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

#define L

main()

{

char resul

INST_DECL (vm, “E1411B", REGISTER);

char command [LENGTH]J;

6. cs*/
a C SCPlI exanple of using the interactive

/[*programis witten to pronpt the user for the SCP
/*The command is then executed using the cscpi _exe function

<stdi 0. h>
<stdlib. h>
<string. h>
<cscpi . h>

ENGTH 1000 / *maxi mum | engt h of SCP

t [LENGTH]J; [*string variable for result

node. The
conmand.

command & resul t*/

[*declaration for voltmeter */

[*string variable for SCPI command*/

*/

*/
*/
*/

)

Continued on Next Page

62

Chapter 3

Programming with Compiled SCPI

/ [*pronpt user to enter |ogical address of multinmeter*/
puts (“Enter the logical address of the vm, for example,”

“vxi,24:\n");
gets (command);

INST_STARTUP (); [*start operating system*/
INST_OPEN (vm, command); [*initialize multimeter*/

/*if O returned, open failed and print message*/
if ('vm)

{

fprintf (stderr, “vm at %s failed to open\n”,command);
exit (1);
}

loop to enter SCPI commands/

for (;})
{

printf (“Enter a SCPI command for the multimeter. Hit return “

"to exit\n”);
while (Igets(command)) /*loop until get a nonzero size */
; /*gets may terminate on interrupt*/

if ("*command) [*caused by the command*/

break;
result[0] = O; [*clear result string*/

/*C-SCPI call to execute the SCPI command*/
cscpi_exe (vm, command, strlen(command),result, sizeof(result));

[*if you have a result, print it*/
if (result[0])

printf (“Result : %s”, result);
}
printf (“DONE\n");
exit (0);

~

)

\}

Note

The char array returned for result includes a new line at the end of the array.
Therefore, you do not have to include a new line when printing the results.

Chapter 3 63

Programming with Compiled SCPI

Triggering with the HP Embedded Computer

In order to use the external triggering on the HP Embedded Computer, you
must route the external trigger linesto the TTL trigger lines. Y ou must then
edit your programto trigger from the TTL trigger linesinstead of the external
trigger lines. Seethei vxi t ri gr out e command in the SICL
documentation for information on redirecting the trigger lines.

64 Chapter 3

Troubleshooting Compiled SCPI

Syntax Error
Example

Troubleshooting Compiled SCPI

This chapter provides aguide to troubleshooting errors that may occur when
using Compiled SCPI software. Examples of the most common errors are
described. This chapter includes the following:

-- Resolving Compiled SCPI Preprocessor Errors
-- Resolving Compile and Link Errors

-- Resolving Compiled SCPI Run-Time Errors

-- Using GNU Debugger

-- Trapping Errors with cscpi_error

Resolving Compiled SCPI Preprocessor Errors

When executing the preprocessor command, cscpi pp, you may get
preprocessor syntax or usage errors. These errors can occur from
unfamiliarity withthe C-SCPI command set or with just asimpletyping error.
The following illustrates executing the preprocessor command:

cscpi pp exanpl e2.cs > exanpl e2.c

Error Message
source2.cs", line 12: missing or extra "

Resolution

Look in your program on line 12 for amissing quote. Use Chapter 5 for
command syntax. In this program snippet, the statement on line 12 is

| NST_SEND. Thel NST_SEND command is expecting a string constant
containing SCPI commands. The string constant should be enclosed in quotes
as displayed below:

| NST_SEND(vm " CONF: VOLT: DC % ", nunbl) ;

66 Chapter4

Program Description

Troubleshooting Compiled SCPI

{

—

|

float nunbl=2.0;

float vm dc;

| NST_STARTUP() ;

I NST_OPEN(vm "vxi, 24");

I NST_SEND(vm " CONF: VOLT: DC % , nunbl);
| NST_QUERY(vm "READ?","% ", & m dc) ;
exit(0);

//f/* source2.cs: set voltneter to nmeasure DCvolts, query for the ;7\
/* results, and print the results.*/
#i ncl ude <stdio. h>
#i ncl ude <cscpi. h>
I NST_DECL(vm "E1411B", REG STER)
main ()

)

Usage Error
Example

Where To Go For More Information

For C-SCPI preprocessor syntax errors, refer to the Chapter 5, “Compiled
SCPI Command Reference.” Detailed descriptions of the C-SCPI commands
and their usage are described there.

Error Message

"source2.cs", line 11: undeclared identifier
"source2.cs", line 21: undeclared identifier
Resolution

Look in your program on line 11 to determine the undeclared identifier. In
this example, line 11 is as follows:

I NST_OPEN(vm "vxi, 24");

Thel NST_DECL command does not precede tidST_OPEN, and
thereforey mhas not been declared.

Chapter 4 67

Troubleshooting Compiled SCPI

Program Description

/7; source2.cs: set voltneter to nmeasure DC volts, query for thegr\
/* results, and print the results. */
#i ncl ude <stdio. h>
#i ncl ude <cscpi. h>

main ()
float nunbl=2. 0;

float vm dc;
| NST_STARTUP() ;

- | NST_OPEN(VM " VXi | 24") ;
| NST_DECL(vm "E1411B", REG STER) ;

exit(0):
}
_ J

Where To Go For More Information

For C-SCPI preprocessor usage errors you should check the following:

-- Chapter 5, “Compiled SCPI Command Reference”
-- Chapter 2, “Using Compiled SCPI".

68 Chapter4

Compile Error
Examples

Troubleshooting Compiled SCPI

Resolving Compileand Link Errors

Compile and link errors occur when executing the compiler and linker
commands. Once you have resolved compile or link errors, you must re-run
the C-SCPI preprocessor. The compile/link processis as follows:

compile gcc -c -nthreads source2.c

link gcc -mthreads -0 source2 source2.o
-l cscpi -1sicl

Error Message

source2.cs: 5:parse error before 'vni
source2.cs:5:warning: data definition |acks type or storage class
source2.cs:In function nmain:

Resolution

Determine if vmhas been declared and defined as type | NST. Check your
program to determine if you have done the following:

1. included the cscpi . h header file to define type | NST, and
2. used the| NST_DECL command to declare vmas type | NST.

For this particular error, thecscpi . h header file was not included.

Chapter 4 69

Program Description

Troubleshooting Compiled SCPI

ﬁ* sour

main ()
{
fl oat
fl oat

exi t(

/* results, and print the results. */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

—>I NST_DECL(vm "E1411B", REG STER) ;

| NST_STARTUP() ;
| NST_OPEN(vm "vxi , 24");

ce2.cs: set voltneter to neasure DCvolts, query for the*h

nunbl=2. 0;
vm dc;

0);

/

Note

Once you have resolved acompile error, you MUST re-run the C-SCPI
preprocessor. Otherwise, you will be compiling the same code you were before.

Error Message

source2.cs: In function main:
source2.cs: 27: inconpatible types in argunent passing

Resolution

Look inyour program on line 27 to determine the C-SCPI command in error.
In this example, the C-SCPI command on line 27 is as fol lows:

| NST_QUERY(vm " READ?", " 9% ", vm dc) ;

Using Chapter 5, “Compiled SCPI Command Reference” look up the

I NST_QUERY command and make sure you have set up the parameters
correctly. Thd NST_QUERY command expects the parameter for the result of
the query to be an address. Therefore, this parameter must be a pointer type. By
placing the% in front ofvm dc, the results of the query will be placed in the
address of the variablem dc. The query statement should be as follows:

| NST_QUERY(vm " READ?", " 9% ", &m dc) ;

70 Chapter4

Troubleshooting Compiled SCPI

Program Description

/7; source2.cs: set voltneter to nmeasure DC volts, query for the;r\
/* results, and print the results. */
#i ncl ude <stdio. h>
#i ncl ude <cscpi. h>
I NST_DECL(vm "E1411B", REG STER)
main ()

{
float nunbl=2.0;
float vm dc;

| NST_SEND(vm " CONF: VOLT: DC % ", nunb1l) ;

I NST_QUERY(vm "READ?", "% ", vm_ dc) ;
exit(0);

} /

Note

Once you have resolved a compile error, you MUST re-run the C-SCPI

preprocessor. Otherwise, you will be compiling the same code you were
before.

Where To Go For More Information

For this type of error you should check Chapter 5, “Compiled SCPI
Command Reference” to review the syntax of the commands.

Error Message

source2.cs: |In function main;
source2.cs:29: invalid type argunent of ’'unary’

Resolution

Look in your program on line 29 to determine the C-SCPI command in error.
In this example, the C-SCPI command in error is as follows:

I NST_QUERY(vm " SYST: ERR?", "%, %", err_num err_nsq) ;

Chapter 4 71

Troubleshooting Compiled SCPI

Using Chapter 5, “Compiled SCPI Command Reference” look up the

I NST_QUERY command and make sure you have setup the parameters
correctly. Tha NST_QUERY command expects the parameter for the results
of the query to be an address. Therefore, the parameters for both results
should be a pointer type. TB¥ST: ERR? command differs from theREAD?
command in the previous example in that it returns two items: error number
and error message. By placing ta@ front ofer r _num the results of the
query will be placed in the address of the variadte, num The query
statement should be as follows:

I NST_QUERY(vm " SYST: ERR?", "%, %", &rr_num err_mnsq) ;

Becauseerr _nsg is declared as a character arralya []), it does not
require the& to be placed in front of it.

Note Once you have resolved a compile error, yduST re-run the C-SCPI
preprocessor. Otherwise, you will be compiling the same code you were before.

Program Description

K/* source2.cs: set voltmeter to measure DC volts, query for the’)
/* results, and print the results. */
#i ncl ude <stdio. h>
#i ncl ude <cscpi . h>
| NST_DECL(vm "E1411B", REG STER) ;
main ()

{
char err_nsg[100] ;
int err_num

» I NST_QUERY(vm " SYST: ERR?", "%, %", err_num err_nsqg) ;

exit (0):
U J

Where To Go For More Information

For this type of error you should check Chapter 5, “Compiled SCPI
Command Reference” to review the syntax of the commands.

72 Chapter 4

Link Error Examples

Troubleshooting Compiled SCPI

Error Message
Undefi ned Synbol (s):
iintron
i unmap
iintroff
i map

Resolution

Determineif you have linked al the appropriate libraries your program
needs. This particular error can be resolved by linking in the SICL library:

gcc -nmthreads -o source2 source2.0 -lcscpi -Isicl

Error Message

Undefi ned Symbol (s):
instr_msc

i nstr_query
instr_send

cscpi _open_error

Resolution

Determineif you havelinked all the appropriatelibrariesyour program needs.
This particular link error can be resolved by linking in the C-SCPI library:

gcc -nmthreads -o source2 source2.0 -lcscpi -Isicl

Chapter 4 73

Troubleshooting Compiled SCPI

Where To Go For More Information

For thistype of error, you should refer to the following:
1. “Running Your First Compiled SCPI Program” in Chapter 1 or

2. Chapter 2, “Using Compiled SCPI” for information describing the
compile and link process for C-SCPI.

Resolving Compiled SCPI Run-TimeErrors

Run-time errors occur when executing the program's executable code. This
section describes some run-time errors with descriptions of what to look for
when trying to resolve them. For more detailed information on debugging
run-time errors, refer to “Using GNU Debugger” beginning on page 79.
Additionally, the instruments can generate errors. Refer to the “Trapping
Errors with cscpi_error” beginning on page 81 of this chapter or the
instrument manual for these specific errors.

Error Message

error: | NST_OPEN before | NST_STARTUP
open failed on vm
cscpi open error nunber: 1

Resolution

Look in your program to determine where this message is printed. Using
Table 4-1, look up thescpi _open_error number displayed to determine
what could have caused this problem

74 Chapter 4

Troubleshooting Compiled SCPI

Table 4-1. Run-time Errors

Error # Most Likely Cause Description of Cause

0 No error has occurred. No error has occurred.

1 I NST_STARTUP was not included in the See following page for discussion.
program before | NST_OPEN.

2 A mismatch between the declaration and This occurs because the declaration made for
the open for the instrument(s) was detected | the instrument (I NST_DECL) did not match the
by the instrument driver. instrument that was opened in the | NST_OPEN

command. This could also occur if one of the
cards in a scanning multimeter is not supported.

3 System is out of memory. Check your system’s resources.

4 Format of the address encountered with a This occurs when the software cannot
multiple card instrument was understand an address of a multiple card
incorrect. Format: instrument (scanning multimeter or Digital
I NST_OPEN(vm "vxi, (nn,nn)"); Functional Test System).

5 Invalid address was encountered (SICL See Program Description 2 of this section.

i open("vxi,nn") call failed.)
6 SICL is not setup properly or not running Determine if SICL is running on your system.
(SICLi open("vxi") call failed). (See Other Causes of Program Description 2
of this section.)
7 or 8 | SICL has encountered a resource problem, | Contact your local Support organization.
or an Internal SICL error has occurred.
9, 10, Internal SICL error has occurred. Contact your local Support organization.
or11
12 or System encountered a resource problem. Contact your local Support organization.

13

14 Instrument driver can not provide the This occurs when the instrument driver is not
required information. compatible with the version of C-SCPI that is

installed on your system.
Note Once you have resolved arun-time error, you MUST re-run the C-SCPI

preprocessor and re-compile and link your code. Otherwise, you will be
using the same code you were before.

Chapter 4

75

Troubleshooting Compiled SCPI

Thecscpi _open_error variableisdefined and declared inthecscpi . h
include file. Therefore, you do not need to declareit in your program.

Program Description

/* source2.cs: set voltnmeter to neasure DC volts, query for the:7\
/* results, and print the results. */
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <cscpi. h>
I NST_DECL(vm "E1411B", REG STER)
main ()
{
float nunmbl=2.0;
float vm dc;
ml- | NST OPEN(VM " VXi , 24") ;
if (vme=0)
{
printf("open failed on vmin");
printf("cscpi open error nunber: %\ n", cscpi_open_error);
exit(1l);
}
I NST_SEND(vm " CONF: VOLT: DC % ", nunbl) ;
| NST_QUERY(vm "READ?","9% ", & m dc) ;
exit(0);

_ J

Thisparticular cscpi _open_er ror iserror number 1. To resolvethiserror,
you will need to add | NST_STARTUP in the program before | NST_OPEN.

76 Chapter 4

Troubleshooting Compiled SCPI

[I* source2.cs: set voltmeter to measure DC volts, query for the’m
/* results, and print the results. */
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <cscpi . h>
I NST_DECL(vm "E1411B", REG STER) ;
main () {
float nunbl=2.0;
fl oat vm dc;
| NST_STARTUP() ;
I NST_OPEN(vm "vxi, 24");
if (vme=0){

Note

Error Message

open failed on vm
cscpi open error nunber: 5

Resolution

Thisparticular cscpi _open_er r or iserror number 5. Thiserror isreported
because the instrument card does not exist at the address stated in the
I NST_OPEN command.

The program resolution is as follows:

.rrain Of

| NST_STARTUP() ;
I NST_OPEN(vm "vxi, 24");

Once you have resolved a run-time error, you MUST re-run the C-SCPI
preprocessor and re-compile and link your code. Otherwise, you will be
using the same code you were before.

Chapter 4 77

Troubleshooting Compiled SCPI

Program Description

mai n () {
float nunbl=2.0;
fl oat vmdc;
| NST_STARTUP() ;
—» I NST_OPEN(vm "VXI, 32");
if (vme=0){
printf("open failed on vmin");
printf("cscpi open error nunber: %\ n",
cscpi _open_error);
exit(1);

\ /

Other Causes

Additionally, there are other reasons | NST__OPEN may fail with an error
number 5or error number 6. These are as follows:

-- SICL is not properly setup on the system where you are executing
your program.

Where To Go For More Information

To resolve these errors you will need to do one or more of the following:

1. Usethe error number from the cscpi _open_error variableto
determine what type of problem you may have encountered.

2. Check Table 4-1 to look up possible causes of cscpi _open_error.

3. Run/usr/sicl/bin/ivxisc to determine if aresource manager problem
occurred.

4. Refer to SICL documentation for more information on resolving SICL
errors.

78 Chapter4

Preparing to
Use GDB

Troubleshooting Compiled SCPI

Using GNU Debugger

This section provides alook at using the GNU debugger. GDB is a software
tool that allows you to step through your program when a run-time error
occurs. For more detailed information on how to use GDB, refer to Lynx
Documentation.

When using GDB with your C-SCPI programs, you must compile and link
your code using the debugger option, - g:

To Compile gcc -c -g -nthreads source2.c
TolLink gcc -g -nthreads -o source2 source2.o0
-l cscpi -1sicl

To Compile/Link gcc -g -mthreads -o source2 source2.c
-l cscpi -1sicl

Now, you can use GDB to debug your program. The following is a quick
reference to some of the more useful gdb commands:

* "s" to single step INTO a function.

* "n" to single step OVER a function.

 "p" to print a variable or expression (p numb1).
 "p" to change value of a variable (p numb1=3.0).
« "c" to continue the program

 "b" to set a breakpoint at a line number (b 34).

« "list routine-name" to view the source code.

« "dir source-dir" to add a directory to the search path.

Chapter 4 79

Executing GDB

Troubleshooting Compiled SCPI

To execute GDB, at the command prompt enter the following:

gdb source2
where sour ce2 isthe name of your program.

Y ou will enter the gdb program and will see the GDB prompt, (gdb). At the
prompt, you need to first send the command to ignore signal 32. Then you set
abreakpoint (we have shown main as an example) and run. Thiswill run the
program to the breakpoint specified. Y ou can then single step through your
program with the s command. The following is an example of using GDB:

$gdb test

GDB is free software and you are wel cone to distribute
copies of it under certain conditions; type “show
copying” to see the conditions. There is absolutely no
warranty for GDB; type “show warranty” for details.
GDB 4.15-96q1 (i386-unknown-lynxos2.5),
Copyright 1995 Free Software Foundation, Inc...
(gdb) b main

Breakpoint 1 at 0x267: file test.c, line 15.

(gdb)run

Starting program: /tmp/test

Kernel supports MTD ptrace requests.

Breakpoint 1, main () at test.c:15

15 id = iopen(“vxi");
[New process 65 thread 37]
16 if (1id) {

(gdb)

80 Chapter4

Note

Troubleshooting Compiled SCPI

Trapping Errorswith cscpi_error

This section providesaguidetousingthecscpi _error routinetotrap VXI
instrument run-time errors. With C-SCPI, instrument syntax errors are
reported when the C-SCPI preprocessor runs. Instrument run-time errors,
however, are not reported which can result in incorrect program data.

You canwriteacscpi _error routineand link it into your C program. This
error routine would then be called every time an instrument run-time error is
putintotheinstrument’serror queue. If youdonot usecscpi _er ror , C-SCPI
providesadummy routinethat doesnothing. Usingcscpi _err or alowsyou
to write your own error routine to handle run-time errors.

Several advantages of usingthecscpi _err or routineincludethefollowing:

-- You assure datais correct by guaranteeing no errors are in the
instrument’s error queue.

-- You avoid continually checking the instrument’s error queue for run-
time errors.

cscpi _error isonly called for REG STER configuration types.

Chapter 4 81

VXI Instrument
Run-time Errors

Troubleshooting Compiled SCPI

A VXI instrument run-time error is an error that occurs at runtime and is put
into the instrument’s error queue. Exampl es of run-time errorsinclude out of
range errors and triggering too fast errors.

The following program segment causes aV X1 instrument run-time error.

{

N

#i ncl ude <stdio. h>
#i ncl ude <cscpi. h>

I NST_DECL (vm "E1411B', REG STER);

mai n()

fl oat answer;

| NST_STARTUP() ;
I NST_OPEN (vm "vxi, 24");

I NST_SEND (vm " FUNC: VOLT: AC');

ml- | NST_SEND (vm " VOLT: RANGE 400");
I NST_QUERY (vm "READ?", "9%", &answer);

printf ("answer: % \n", answer);

ﬁ*Thi s program segnment sends a SCPI command to the HP E14llB*/\
/[*Mul tinmeter that is out of range.*/

J

The program will run and provide an answer. A run-time error, however, was
generated and put into the instrument’s error queue. You can add a

SYST: ERR? command to check each instrument. The recommended method,
however, isto usethecscpi _error routineto trap instrument run-time
errors as they occur.

82 Chapter4

Troubleshooting Compiled SCPI

Using cscpi_error Tousecscpi _error you must placeacscpi _error routinein your
Cprogram (or inaseparatefileand link it in). Thisroutineis passed the SICL
instrument id and the error number. Thefollowing cscpi _er r or routinecan
be found in the /usr/hp75000/demos/cscpi directory. Y ou can use this error
routine, edit this routine, or you can write your own.

//V*CSCpi_error.c*/
/*This routine provides the SCPl error routine for run-tine errors.*/
[*Errors in the instrunent’s error queue are reported.*/

#i ncl ude <cscpi . h>

void cscpi_error (INST sicl_inst, int error_nunber)

{
char string[20]="SYST: ERR?";

char result[255];
cscpi _exe(sicl _inst,string,strlen(string),result,sizeof(result));
printf ("ERROR %", result);

exit(1);
\J)

Thecscpi _error routine provided prints the error message and exits the
program. If you areusingcscpi _err or inaseparatefile, you must
compile and link both files:

* Run your C program through the C-SCPI preprocessor:
cscpi pp exanple.cs > exanple.c

« Compile each file:

gcc -c [-g] -mthreads exanple.c
gcc -c [-g] -mthreads cscpi_error.c

* Link the files:

gcc [-g] -nthreads -o exanpl e exanple.o cscpi_error.o
-lcscpi -1sicl

Whenusingscpi _err or, some restrictions apply. See the restrictions listed
for thel NST_ONSRQ command in Chapter 5.

Chapter 4 83

Troubleshooting Compiled SCPI

Notes:

84 Chapter4

Compiled SCPI Command Reference

Compiled SCPI Command Reference

This chapter contains a detailed description of the Compiled SCPI (Standard
Commands for Programmabl e Instruments) command reference. This
chapter contains the following sections:

Compiled SCPI Macro Commands

ol NST_CLEAR (id) vttt Page 88
ol NST_CLOSE (id) ..o Page 90
ol NST_DECL (id, driver, type)coviiiiiiiinanan.. Page 92
ol NST_EXTERN (id, driver,type)ccviiiinin.. Page 94
ol NST_ONSRQ(id, ¢ function)cooiut Page 96
oI NST_OPEN (id,dev addr) ..., Page 98
ol NST_PARAM(id, driver, type)ccoiviiiiiiinan.. Page 100
el NST_QUERY (id, cmd_string, readfmt [c_expr..],c_addf,c_addr..]) Page 102
ol NST_READSTB (id,c_addr)cooiiiins. Page 108
I NST_SEND (id, cd_string[,c_expr..]) Page 110
Sl NST_STARTUP () oo Page 116
oI NST_TRIGGER (id) ..o Page 117

Compiled SCPI Functions

ecscpi _error(Sicl_inst,error_number) Page 119
ecscpi _exe(id, cmd_string, cmd_length, result, result_length) .Page 120
ecscpi _exe_fildes(id,inyout) Page 122
ecscpi _exe_strean(id, fin,fout) Page 124
ecscpi _get _overlap() ...t Page 126
ecscpi _overlap(mode) ...t Page 127
Compiled SCPI Quick Reference Page 128

86 Chapter5

Compiled SCPI Command Reference

Compiled SCPI Macro Commands

The C-SCPI macro commands are replaced by driver callsfor REG STER
configurations and SICL commands for MESSAGE configurations when the
C-SCPI preprocessor runs. Each C-SCPI macro command syntax isdescribed
in the following form:

C-SCPI Macro Command (parameter 1, parameter 2, [parameter 3], etc.)

Commands are listed at the top of the page. Each command has a short
description and the following information:

-- Command Syntax

-- Parameters

-- Comments

-- Example Program Segment

Chapter 5 87

Syntax

Parameters

Comments

Compiled SCPI Command Reference
INST_CLEAR

INST_CLEAR

Theinstrument clear command sends an | EEE-488.2 device clear equivalent
to the instrument selected by the id parameter.

| NST_CLEAR (id);

Parameters Description

id

The user variable name for the instrument. This is the variable name
that you assigned to the instrument in the | NST_DECL or

I NST_EXTERN command. Once the variable name is assigned, you
can use that variable to send information to the instrument.

For example,

INST_DECL (vm "E1410A", MESSAGE); /*assigns variabl e*/
I NST_CLEAR (vm); [*cl ears E1410A*/

» For MESSAGE configurations, C-SCPI uses the SICtl ear (i d)

function. See the SICL documentation for more information.

« With REA STER configurations, you might use this command in a

signal handling routine. You can set up the routine to be called in

response to a signal that you generate, such as a Ctrl C. You might

generate the Ctrl C if your program seems hung driNgm_SEND or
I NST_QUERY command.

88

Chapter5

Compiled SCPI Command Reference
INST_CLEAR

Example This example sends a device clear to the HP E1410A Multimeter.

KI NST_DECL(vm "E1410A", MESSACE); \

mai n()

{
| NST_STARTUP() ;
I NST_OPEN (vm "vxi, 24");
| NST_CLEAR(vM) ;

0 Y,

Chapter 5 89

Syntax

Parameters

Comments

Compiled SCPI Command Reference
INST_CLOSE

INST_CLOSE

The instrument close command closes the I/O channdl of communication
with a device and releases memory used by the instrument driver.

| NST_CLOSE (id);

Parameters Description

id

The user variable name for the instrument. This is the variable name
that you assigned to the instrument in the | NST_DECL or

I NST_EXTERN command. Once the variable name is assigned, you
can use that variable to send information to the instrument.

For example,

INST_DECL (vm "E1411B", REG STER);/* assigns vari abl e*/
I NST_CLCSE (vm; /*cl oses E1411B I/ O channel */

« An | NST_OPEN must be executed earlier in the program to open the 1/0

channel of communication and initialize the instrument driver.
If you do not use ahNST_CLOSE command, the I/O channel will

automatically be closed when the program terminates. This is done by

the underlying SICL 1/O Library.

« Typical reasons for using thé\ST_CLOSE command include the

following:

-- To open another I/O channel of communication for the same
instrument.

-- To use an instrument in a different configuration. For example, you

want to change a switch card configured as part of a scanning
voltmeter to a switchbox configuration.

» For MESSAGE configurations, C-SCPI uses the SICtl ose (i d)

function. See the SICL documentation for more information.

» See alsd NST_COPEN.

90

Chapter5

Compiled SCPI Command Reference
INST_CLOSE

Example This example opens an /O channel of communication for a voltmeter and a
switch. The I/O channels are then closed and an 1/O channel is opened for a
scanning voltmeter (with the switches configured as voltmeter cards).

See the HP E1326B/E1411B 5 1/2-Digit Multimeter User’s Manual for
information on these configurations.

4 I NST_DECL (vm "E1411B', REG STER);)
I NST_DECL (sw, "E1460A', REG STER);

mai n()
{
| NST_STARTUP() ;
I NST_OPEN (vm "vxi, 24");
I NST_OPEN (sw, "vxi, (25,26)");

| NST_CLOSE (v ;
| NST_CLOSE (sw);

I NST_OPEN (vm "vxi, (24, 25,26)");

U Y,

Chapter 5 91

Compiled SCPI Command Reference
INST_DECL

INST_DECL

Instrument declare creates a variable declaration for the instrument data
pointer. This variable can be declared a global variable in the mainline
program, or it can be declared alocal variable in a function. This command
a so designates the name of the instrument driver and the configuration type
(REG STER or MESSAGE).

Syntax | NST_DECL (id, driver, type) ;
Parameters
Parameter Description
id The user variable name for the instrument. This is where you declare

the variable name for the instrument. This variable name will be used
by other C-SCPI commands. For example:

INST_DECL (vm "E1411B"', REGQ STER);
assigns vm to the E1411B.

driver The parameter that defines the HP driver. This parameter is a quoted
string, for example, "E1411B" is the driver name for the HP E1411B
Multimeter. See the HP 75000 Family of VXI Products catalog for a list
of available drivers (available from your nearest HP Sales and
Service Office), or see Appendix A, “Online Documentation” for more
information.

type The parameter that defines the configuration type. The configuration
type can be one of the following keywords:

MESSAGE - for HP-IB or VXI message-based configurations
REQ STER - for register-based configurations

If you have a register-based card configured over HP-IB, the
configuration type is MESSAGE.

Comments e | NST_DECL, | NST_EXTERN, orl NST_PARAMis required to declare the
id parameter. This declaration must be done before any useidf the
parameter.

92 Chapter5

Compiled SCPI Command Reference
INST_DECL

» The contents of thdriver parameter are ignored fRESSAGE
configurations. For those cards, use the instrument name (for example,
E1410A) as theriver parameter. This will increase program
readability.

« It is good practice to udeNST_DECL at the beginning of your program
to ensure you are not declaring an instrument in the middle of an
executable statement. You can only USIST_DECL where you declare
a normal C variable.

» See alsd NST_EXTERN andl NST_PARAM

Example This example declares a global variable for the HP E1411B. Since the
voltmeter is declared outside of a functiomis available anywhere in the
program file.

4 I NST_DECL (vm "E1411B', REG STER); N

mai n()

| NST_STARTUP() ;
I NST_OPEN (vm "vxi, 24");

U y
This example declares a local variable for the HP E1411B. Since the voltmeter
is declared in the functiornmis only available in the functiomai n.

a8)

mai n()

I NST_DECL (vm "E1411B', REG STER);
| NST_STARTUP() ;
I NST_OPEN (vm "vxi, 24");

.

NG J

Chapter 5 93

Compiled SCPI Command Reference
INST_EXTERN

INST_EXTERN

Instrument external creates an external variable reference for an instrument
datapointer. Thiscommand also specifiestheinstrument driver name and the
configuration type (REG STER or MESSAGE). Thiscommand issimilar to
instrument declare except that it declares a reference to an external variable.

Syntax | NST_EXTERN (id, driver, type);
Parameters
Parameter Description
id The user variable name for the instrument. This is where you declare

the variable name for the instrument. This variable name will be used
by other C-SCPI commands. For example:

| NST_EXTERN (vm "E1411B", REGQ STER);
assigns vmto the HP E1411B.

driver The parameter that defines the HP driver. This parameter is a quoted
string, for example, "E1411B" is the driver name for the HP E1411B
Multimeter. See the HP 75000 Family of VXI Products catalog for a list
of available drivers (available from your nearest HP Sales and
Service Office), or see Appendix A, “Online Documentation” for more
information.

type The parameter that defines the configuration type. The configuration
type can be one of the following keywords:

MESSAGE - for HP-IB or VXI message-based configurations
REQ STER - for register-based configurations

If you have a register-based card configured over HP-IB, the
configuration type is MESSAGE.

Comments * | NST_DECL, | NST_EXTERN, orl NST_PARAMis required to declare the
id parameter. This declaration must be done before any useidf the
parameter.

» See alsd NST_DECL andl NST_PARAM

94 Chapter5

Compiled SCPI Command Reference
INST_EXTERN

Example This example defines an external variable for the HP E1411B Multimeter.
Two program segments are shown, one with the declaration and one with the
I NST_EXTERN to show vm declared in another file.

/I NST_DECL (vm "E1411B"', REG STER); \

extern void setup ();

main (){
| NST_STARTUP () :
I NST_OPEN (v "vxi, 24"):

sétup 0);

}

_)
4)

I NST_EXTERN (vm "E1411B", REQ STER);

voi d setup()

{
I NST_SEND(vm "*RST");

NG J
See Chapter 3, “Programming with Compiled SCPI” for a more detailed
example of this command.

Chapter 5 95

Compiled SCPI Command Reference
INST_ONSRQ

IN

ST _ONSRQ

Theinstrument on service request command installs the function specified by
the c_function parameter as a handler to be called when the instrument
specified by id asserts a service request.

Syntax I NST_ONSRQ (id, c_function) ;
Parameters
Parameters Description
id The user variable name for the instrument. This is the variable name

that you assigned to the instrument in the | NST_DECL or

I NST_EXTERN command. Once the variable nhame is assigned, you
can use that variable to send information to the instrument.

For example,

INST_DECL (vm "E1411B", REG STER);/* assigns vari abl e*/
I NST_ONSRQ (vm services;/*calls service when E1411B
asserts service request*/

¢ _function

The C function that is called when a service request is asserted from
the instrument defined by the id parameter. When writing your

C function, you must include the | NST_PARAMcommand so that you
can pass the instrument id. See the example shown on the next

page.

Comments * To disable the service request, setadheinction parameter to 0. It is

good practice to disable service request when entering a service routine.
This avoids any confusion that would result by calling the service
routine while already executing this routine.

If an SRQ function is called, it should generally not send commands to
an instrument if the main program is using the same instrument. Also,
some register-based instrument commands should not be executed from
an SRQ function called from an interrupt routine. See the instrument's
C-SCPI online documentation for information on when a register-based
instrument causes an SRQ function to be called from an interrupt
routine. See the SICL documentation for more information on message-
based devices.

96

Chapter5

Example

Compiled SCPI Command Reference
INST_ONSRQ

* The SICLi i ntron andi i ntrof f functions can NOT be used for
disabling and enabling the C-SCPI ONSRQ interrupt®i@® STER
configurationsREA STER configurations may call the function
specified in thé NST_ONSRQ macro command from within other
I NST functions.MESSAGE configurations, however, use the SICL
interrupts and can be enabled or disabled using these SICL functions.

» For MESSAGE configurations, C-SCPI uses the SICansr q()
function. See the SICL documentation for more information.

« When writing your C function to be called with a service request, you
must include thé NST_PARAMcommand to pass the instrument id.

« If you usel NST_ONSRQwhile in the overlapped mode, you can come
across other problems where your controller may be doing other tasks
rather than finishing up the instrument command. See “Overlapped
Mode” in Chapter 2 for additional information.

* Thel NST_ONSRQcommand cannot be executed before @ OPEN
command.

* See the SRE command in the VXI instrument User's Manual.

This example shows the call service if the HP E1411B Multimeter asserts a
service request.

4 I NST_DECL (vm "E1411B', REG STER);)

void service (INST_PARAM (id, "E1411B", REGQ STER))
{
}
main ()
{
| NST_STARTUP() ;
I NST_OPEN (vm "vxi, 24");
I NST_ONSRQ (vm service);

U Y,

Chapter 5 97

Syntax

Parameters

Compiled SCPI Command Reference
INST_OPEN

INST_OPEN

The instrument open command opens the I/O channel of communication to
the instrument specified by the id parameter. REG STER configured
instruments are initialized and set to their power-on state.

| NST_OPEN (id, dev_addr);

Parameters

Description

id

The user variable name for the instrument. This is the variable name
that you assigned to the instrument in the | NST_DECL or

I NST_EXTERN command. Once the variable name is assigned, you
can use that variable to send information to the instrument.

For example,

INST_DECL (vm "E1411B", REG STER);/* assigns vari abl e*/
I NST_OPEN (vm vxi, 24); /*opens |1/ O channel to E1411B*/

dev_addr

The SICL address for the instrument. This address can be a quoted
string or a pointer to a char array. With a pointer to a char array, you
can assign card addresses at run time.

If a VXI instrument is used, the "vxi,xx" quoted string should be used
with xx being the logical address of the instrument. Multiple cards
can be configured as a switchbox or scanning voltmeter. To specify
multiple cards, enclose the card addresses in parentheses and
separate with commas. For example, "vxi,(24,25,26)" can be used
for a scanning voltmeter configuration. The voltmeter is at logical
address 24, and the switch cards are at logical addresses 25 and 26.

If an HP-IB instrument is used, the "hpibxx,xx,xx" quoted string
should be used with the first xx being the logical unit, the second xx
the primary address, and the last xx the secondary address. For
example, "hpib7,23,1" can be used where 7,23,1 is the logical unit,
primary address, and secondary address respectively.

98

Chapter5

Comments

Example

Compiled SCPI Command Reference
INST_OPEN

» This command seREG STER configured instruments to their power-

on state. See the instrument's VXI user's manual for information on the

instrument power-on state.

» | NST_OPENmust be executed after the instrument declaration and
before the system start-up (for exampleST_DECL and
I NST_STARTUP). This command must also be executed before any
instrument command that usiels

« If this command fails, thad parameter is set to 0. It is good practice to
check thad parameter before doing anything else. RE® STER
configurations, you can also check ttexpi _open_error global
variable for more information. (See Chapter 4, “Troubleshooting
Compiled SCPI,” for information on checking this variable). For
MESSAGE configurations, see the SlIGlgeterrno () and
igeterrstr ().

» FOorMESSAGE configurations, C-SCPI uses the SliGipen() function.

The command opens a connection to the instrument without performing

an initialization. See the SICL documentation for more information.
» See alsd NST_CLOSE.

This example initializes the HP E1411B and HP 3457A Multimeters and
checks for errors.

/I NST_DECL(vml, "E1411B", REG STER); \
| NST_DECL (vnR, "3457A", MESSAGE);
mai n()
{

| NST_STARTUP() ;
| NST_OPEN (vnil, "vxi,24");
if (vmi == 0)
{
printf ("INST_OPEN failed, CSCPl error:
%\ n", cscpi _open_error);
exit(1);
}
| NST_OPEN (vnR2, "hpib, 22");

\J_ J

Chapter 5 99

Compiled SCPI Command Reference
INST_PARAM

INST_PARAM

The instrument parameter command defines an 1/O channd to be passed to
functions. Thiscommand isused whentheinstrument is declared out of scope
and you need to pass the instrument declaration into a function.

Syntax | NST_PARAM (id, driver, type) ;
Parameters
Parameter Description
id The user variable name for the instrument. This is where you declare

the variable for the instrument. This variable name will be used by
other C-SCPI commands. For example:

| NST_PARAM (vm "E1411B", REGQ STER);
assigns vmto the E1411B.

driver The parameter that defines the HP driver. This parameter is a quoted
string, for example, "E1411B" is the driver name for the HP E1411B
Multimeter. See the HP 75000 Family of VXI Products catalog for a list
of available drivers (available from your nearest HP Sales and
Service Office), or see Appendix A, “Online Documentation” for more
information.

type The parameter that defines the configuration type. The configuration
type can be one of the following keywords:

MESSAGE - for HP-IB or VXI message-based configurations
REQ STER - for register-based configurations

If you have a register-based card configured over HP-IB, the
configuration type is MESSAGE.

Comments * | NST_DECL, | NST_EXTERN, orl NST_PARAMis required to declare the
id parameter. This declaration must be done before any useidf the
parameter.

» See alsd NST_DECL and | NST_EXTERN.

100 Chapter5

Example

Compiled SCPI Command Reference
INST_PARAM

This example showsthe | NST_PARAMcommand used to pass the instrument
declaration to the set up function.

/setup (I NST_PARAM (i d, "E1411B", REG STER)) I
{

I NST_SEND (id, "*RST");

}
mai n()
{
I NST_DECL (vm "E1411B", REd STER);
| NST_STARTUP() ;
I NST_OPEN (vm "vxi, 24");
setup (vm;

N /

Chapter 5 101

Compiled SCPI Command Reference
INST_QUERY

INST_QUERY

The instrument query command sends the SCPI command(s) in the
cmd_string parameter to the instrument defined by the id parameter. This
command also storesthe result(s) from the query command in the address(es)
specified by the c_addr parameter.

Syntax | NST_QUERY (id, cmd_string, readfmt [, ¢c_expr.], ¢c_addr|,
c_addr..]);
Parameters
Parameters Description
id The user variable name for the instrument. This is the variable name that you
assigned to the instrument in the | NST_DECL or | NST_EXTERN command. Once the
variable name is assigned, you can use that variable to send information to the
instrument. For example,
I NST_DECL (vm "E1411B"', REQ STER); /* assigns vari abl e*/
I NST_QUERY (vm "*TST?", "", &results); /*sends to E1411B*/
cmd_string | The string constant containing the SCPI command(s). See the instrument’s VXI

User's Manual for information on the SCPI commands, or see Appendix A, “Online
Documentation” For example:

I NST_QUERY (vm "*TST?", "", &result);

where * TST? is the cmd_string. Any SCPI parameter in the string can be expressed
with a format specifier. If a format specifier is used, each [c_expr] parameter that
follows contains the corresponding C expression. This is similar to the format
specifiersinthe C pri ntf function. The following format specifiers are available for
REQ STER configurations:

%l L7 %

% %

%s %

Each of these format specifiers is discussed on the following pages.

102 Chapter5

Compiled SCPI Command Reference
INST_QUERY

cmd_string
Format
Specifiers

NOTE: The format specifier must be the same type that the instrument expects. If,
for example, the instrument expects a float number, you must use the % format
specifier. See the instrument user’s manual for information on what the SCPI
command expects.

NOTE: For MESSAGE configurations, C-SCPI uses the SICL i pri ntf function. See
the SICL documentation for additional information on the format specifiers for
MESSAGE configurations.

%l The %d format indicates that an int is used as the numeric expression for
the [c_expr] parameter. For example,

int nunbil;
I NST_QUERY (vm " MEAS: RES? %l","% ", nunbl, & esult);

If a comma is present in the format specifier, the [c_expr] is a pointer to an
array of integers instead of a numeric expression. The comma operator is
immediately followed by a number indicating the size of the array. The
comma can be useful when you have a list of channels to query. For
example,

int list[5] ={101, 102, 103, 104, 105}
| NST_QUERY(sw, " CLOSE? (@ 5d)", "% 5d",1ist, &esult);

NOTE: C-SCPI requires that the comma operator’s corresponding array
contain the complete channel list. In the C-SCPI command above, for
example, you cannot add another comma operator to specify more
channels to query.

Chapter 5 103

Compiled SCPI Command Reference

INST_QUERY
cmd_string % The % format indicates that a float is used as the numeric expression for
Format the [c_expr] parameter. For example,
Specifiers
(continued) float nunmbi;

I NST_QUERY (vm "MEAS: RES? %","% ", nunbl, & esul t);

If a comma is present in the format specifier, the [c_expr] is a pointer to an
array of floats instead of a numeric expression. The comma operator is
immediately followed by a number indicating the size of the array. The
comma can be useful when you have a list of channels to query. For
example,

float |ist[5] ={101, 102, 103, 104, 105};
| NST_QUERY(sw, " CLOSE? (@4 5f)","%5d",1ist, &esult);

NOTE: C-SCPI requires that the comma operator’s corresponding array
contain the complete channel list. In the C-SCPI command above, for
example, you cannot add another comma operator to specify more
channels to query.

% The % format indicates that a string expression without quotations is
used in [c_expr]. For example,

char count[5] = "MAX";

I NST_QUERY (vm " SAMP: COUNT? %", "%", count, & esult);

%S The %6 format indicates a string expression with quotations is used for
[c_expr]. See | NST_SEND for example.

% The % format indicates an expression is used for [c_expr]. See
| NST_SEND for example.
Y<width> The %b format indicates that an array is used for [c_expr]. <width> is
[size]b either a number or an asterisk (*). The number indicates the

number of elements to be sent, and the * indicates that the number
is taken from the next parameter (for example, ¥4024b or % b).
See | NST_SEND for an example. [size] determines the size of each
element in the array. [size] can be one of the following:

% pointer to an array of char (8 bits)

% b pointer to an array of long int (32 bit words)

%nb pointer to an array of short (16 bit words)

% b pointer to an array of float (32 bit floating point numbers)
%b pointer to an array of double (64 bit floating point numbers)

104 Chapter5

Compiled SCPI Command Reference

INST_QUERY
cmd_string | %<width> The % format indicates that a binary FILE* is used for [c_expr].
Format [size]a <width> is either a number or an asterisk (*). The number indicates
Specifiers the number of elements to be sent, and the * indicates that the
(continued) number is taken from the next parameter (for example, ¥%4024a or
% a). See | NST_SEND for an example. [size] determines the size of
each element in the array. [size] can be one of the following:
% binary file containing an array of char (8 bits)
% a binary file containing an array of long int (32 bit words)
%na binary file containing an array of short (16 bit words)
% a binary file containing an array of float (32 bit floating point)
%a binary file containing an array of double (64 bit floating point)
readfmt | The format of the query result when using a MESSACE configuration. A format

specifier is used in this location. See the instrument’s VXI user’'s manual for
information on query response types. See i scanf in the SICL manual for a
description of available format specifiers.

I NST_QUERY (vm "*IDN?", "9%", addrloc);

indicates that the result of the * | DN? command is a string (because of the ¥%s).
The contents of this parameter are currently ignored for REG STER configurations;
however, it is good practice to include a format specifier in case you change to a
MESSAGE configuration.

[c_expr] |The expression that is used if a format specifier appears in the cmd_string parameter.
Any valid C expression can be used. The preprocessor does not check to make sure
it is the same type as the format specifier.

c addr |The address where the results of the instrument query is stored. Any valid C
expression which evaluates to an address can be used. The preprocessor does not
check it. The address location should be of the same type as the response. If a string
is returned, only non-quoted strings are returned. See Appendix A, “Online
Documentation” for details on finding query command response types.

[c_addr] |The address if more than one result is returned from the query. For example, if you

have " SYST: ERROR?" as the SCPI command, two items are returned, the error
number and the error message:

I NST_QUERY (vm "SYST: ERR?","", &rr_num err_nsg);

Chapter 5 105

Comments

Compiled SCPI Command Reference
INST_QUERY

» Multiple SCPI commands can be combined indind_string parameter.

As with SCPI, these commands are separated by semicolons (;). For
example} RST; MEAS: VOLT: AC? is a common commantgST) linked
with a SCPI commandvEAS: VOLT: AC?) separated by a semicolon.

» Thecmd_string parameter must be a quoted string, and the SCPI

command can not be a variable. If you want to use a string variable, use
thecscpi _exe function call.Since HP VXI instruments and the
Controllers use different types of microprocessors, the byte ordering is
critical for % and%a blocks. SICL takes care of tMESSAGE
configurations. FOREG STER configurations, however, you must

know what data size (byte, long, etc.) the instrument expects. See the
C-SCPI online documentation for the specific instrument and use the
format specifiers to specify the size of the data type.

REGQ STER configurations currently ignore the contentsaaidfmt. This
parameter is used BESSAGE configurations to specify the format of
the query result. However, you can still use this parameter in

REGQ STER configurations for program readability.

* When you send a SCPI command NESSAGE configuration, you may

have to include an end of line terminaton(or ;) if the instrument
expects one.

« Online documentation is provided. The documentation contains a SCPI

quick reference, commands not supported, commands changed, the
SCPI command query response types, a list of overlapping commands,
and ONSRQ restrictions. Documentation is supplied for each supported
card. See Appendix A, “Online Documentation” for more information.

» For MESSAGE configurations, C-SCPI uses the SIChr onpt f ()

function. See the SICL documentation for more information.

» See alsd NST_SEND.

Chapter5

Compiled SCPI Command Reference

INST_QUERY
Example This example queries for a card description and stores the result. The result
of the card description query isstored inresul t .
/ I NST_DECL (vm "E1411B", REQ STER); \

mai n() {
i nt cardnun¥l;
char result[255];

| NST_STARTUP() ;

I NST_OPEN (vm "vxi, 24");

| NST_QUERY (vm "SYSTEM CDES? %", "%" , cardnum
&result);

printf ("the vmcard description: %\n", result);

& /

Chapter 5 107

Compiled SCPI Command Reference
INST_READSTB

INST_READSTB

The instrument read status byte command places the results of a serial poll
from the instrument specified by the id parameter in the address specified by
the c_addr parameter.

Syntax | NST _READSTB (id, c_addr) ;
Parameters
Parameters Description
id The user variable name for the instrument. This is the variable name

that you assigned to the instrument in the | NST_DECL or

I NST_EXTERN command. Once the variable nhame is assigned, you
can use that variable to send information to the instrument.

For example,

INST_DECL (vm "E1411B", REG STER);/* assigns vari abl e*/
| NST_READSTB (vm &stb); /*polls E1411B*/

c addr |The address where the results of the serial poll are stored. Any valid
C expression which evaluates to an unsigned character pointer can
be used. The preprocessor does not check to make sure that the
C_addr is an unsigned character pointer.

Comments » Thec_addr parameter must evaluate to an unsigned character pointer.

» For MESSAGE configurations, C-SCPI uses the SICleadst b()
function. See the SICL documentation for more information.

108 Chapter5

Example

Compiled SCPI Command Reference
INST_READSTB

This example pollsthe HP E1411B and storestheresultsinthe st b address

location.
\

KI NST_DECL (vm "E1411B", REQ STER);
mai n()

{

unsi gned char st b;
| NST_STARTUP() ;
I NST_OPEN (vm "vxi, 24");

| NST_READSTB (vm &stb);

Chapter 5 109

Compiled SCPI Command Reference
INST_SEND

INST_SEND

Theinstrument send command sendsthe SCPI informationinthe cmd_string
parameter to the instrument defined by the id parameter.

Syntax I NST_SEND (id, cmd_string [, c_expr...]) ;
Parameters
Parameters Description
id The user variable name for the instrument. This is the variable name that you

assigned to the instrument in the | NST_DECL or | NST_EXTERN command. Once the
variable name is assigned, you can use that variable to send information to the
instrument. For example,

I NST_DECL (vm "E1411B", REQ STER); /* assigns vari abl e*/
I NST_SEND (vm "*RST"); /*sends to E1411B*/

cmd_string | The string constant containing the SCPI command(s). See the instrument’s VXI
user's manual for information on the SCPI commands, or see Appendix A, “Online
Documentation,” for more information. For example:

I NST_SEND (vm "*RST");

where * RST is the cmd_string. Any SCPI parameter in the string can be expressed
with a format specifier. If a format specifier is used, each [c_expr] parameter that
follows contains the corresponding C expression. This is similar to the format
specifiersinthe C pri nt f function. The following format specifiers are available for
REQ STER configurations:

%l %S %

% %

% %
Each of these format specifiers is discussed on the following pages.

cmd_string [NOTE: The format specifier must be the same type that the instrument expects. If,

Format |for example, the instrument expects a float number, you must use the % format
Specifiers |specifier. See the instrument's user's manual for information on what the SCPI
command expects.

NOTE: For MESSAGE configurations, C-SCPI uses the SICL i pri ntf function. See
the SICL documentation for additional information on the format specifiers for
MESSAGE configurations

110 Chapter5

Compiled SCPI Command Reference
INST_SEND

cmd_string
Format

Specifiers

(continued)

%l

%

The %@ format indicates that an int is used for the numeric expression for
the [c_expr] parameter. For example,

int nunmbl = 5;
I NST_SEND(vm " CONF: VOLT: DC %", nunbl);

If a comma is present in the format specifier, the [c_expr] is a pointer to an
array of integers instead of a numeric expression. The comma operator is
immediately followed by a number indicating the size of the array.

The comma can be useful when you have a list of channels to close.

For example,

int list[5] ={101, 102, 103, 104, 105} ;
| NST_SEND (sw, "CLOSE (@6 5d)", list);

NOTE: C-SCPI requires that the comma operator’s corresponding array
contain the complete channel list. In the C-SCPI command above, for
example you cannot add another comma operator to specify more
channels to be closed.

The % format indicates that a float is used for the numeric expression for
the [c_expr] parameter. For example,

float nunbl = 5.2;
| NST_SEND(vm " CONF: VOLT: DC % ", nunbl);

If a comma is present in the format specifier, the [c_expr] is a pointer to an
array of floats instead of a numeric expression. The comma operator is
immediately followed by a number indicating the size of the array. The
comma can be useful to define a waveform for the HP E1340A Arbitrary
Function Generator. For example,

float list[5] ={.5, 1.0, .5, 0,-0.5};
| NST_SEND (arb, "LI ST: VOLT % 5f", list);

NOTE: C-SCPI requires that the comma operator’s corresponding array
contain the complete list. In the C-SCPI command above, for example,
you cannot add another comma operator to specify more points in the
waveform.

Chapter 5 111

Compiled SCPI Command Reference

INST_SEND
cmd_string % The % format indicates that a string expression without quotations is
Format used in [c_expr]. For example,
Specifiers _ n
(continued) char count [5] = "MAX";

| NST_SEND(vm " SAMP: COUNT %", count) ;

%S The %6 format indicates a string expression with quotations is used for
[c_expr]. The preprocessor will add the quotes. For example,

char function[22] = "VOLT: AC';

I NST_SEND(vm "FUNC %8", function);

where the preprocessor puts VOLT: ACin the %8 location with quotes
around it, resulting in FUNC " VOLT: AC".

% The % format indicates an expression is used for [c_expr]. For example,
char cond[] =" or b or QB";
| NST_SEND(d20, "DI G TI M COND: DEF %", cond););

where cond is enclosed in parentheses, (4 or b or B).

112 Chapter5

Compiled SCPI Command Reference
INST_SEND

cmd_string
Format

Specifiers

(continued)

o=width>
[size]b

Y<width>
[size]la

%

% b
%nb
%b
%Zb

%a

% a
%wma
Yz a
%a

The % format indicates that an array is used for [c_expr]. <width> is
either a number or an asterisk (*). The number indicates the number of
elements to be sent, and the * indicates that the number is taken from
the next parameter (for example, ¥4024b or % b). For example,

char data[1024];

| NST_SEND (di g, " SOUR DI G TRAC: DATA
bl ock, ¥4024b", data);

where, 1024 bytes of the array called data is used. You can also use an
int or float array since C-SCPI casts it to a char array.

[size] determines the size of each element in the array. [size] can be
one of the following:

pointer to an array of char (8 bits)

pointer to an array of long int (32 bit words)

pointer to an array of short (16 bit words)

pointer to an array of float (32 bit floating point numbers)

pointer to an array of double (64 bit floating point numbers)

The % format indicates that a binary FILE* is used for [c_expr].
<width> is either a number or an asterisk (*). The number indicates
the number of elements to be sent, and the * indicates that the
number is taken from the next parameter (for example, ¥%4024a or
% a). For example,

int nunb = 1024,

| NST_SEND (di g, " SOUR DI G TRAC: DATA bl ock, % a",
nunb, dat afil e);

where, the first 1024 bytes of the file are sent to the dig.

[size] determines the size of each element in the array. [size] can be
one of the following:

binary file containing an array of char (8 bits)

binary file containing an array of int (32 bit words)

binary file containing an array of short (16 bit words)

binary file containing an array of float (32 bit floating point)

binary file containing an array of double (64 bit floating point)

Chapter 5 113

Compiled SCPI Command Reference
INST_SEND

[c_expr] |The expression that is used if a format specifier appears in the cmd_string parameter.
Any valid C expression can be used. The preprocessor does not check to make sure
it is the same type as the format specifier.

Comments » Multiple SCPI commands can be combined indime_string

parameter. As with SCPI, these commands are separated by semicolons
(;). For examplet RST; SENS: FUNC: VOLT: ACis a common command

(* RST) linked with a SCPI comman@&ENS: FUNC: VOLT: AC)

separated by a semicolon.

e Thecmd_string parameter must be a quoted string. The SCPI command
cannot be a variable. If you want to use a string variable, use the
cscpi _exe function call.

 Since HP VXI instruments and the Controllers use different types of
microprocessors, the byte ordering is critical in%eand%a blocks.
SICL takes care of theESSAGE configurations. FOREG STER
configurations, however, you must know what data size (8, 16, 32, etc.)
the instrument expects. See the C-SCPI online Documentation for the
specific instrument and use the format specifiers to specify the size of
the data type.

» FOrMESSAGE configurations, C-SCPI uses the SIGhr i nt f function.
See the SICL documentation for more information.

» When you send a SCPI command NMESSAGE configuration, you may
have to include an end of line terminaton(or;) if the instrument
expects one.

* Online documentation is provided. The documentation contains a SCPI
quick reference, commands not supported, commands changed, the
SCPI command query response types, a list of overlapping commands,
and ONSRQ restrictions. Online documentation is supplied for each
supported card. See Appendix A, “Online Documentation” for
additional information.

» See alsd NST_QUERY.

114 Chapter5

Compiled SCPI Command Reference
INST_SEND

Example This example sends the select measurement function to the HP E1411B
Multimeter. The%sformat specifierindicatesthatt ype isdeclared asaquoted
string.

/ I NST_DECL (vm "E1411B", REd STER); \
mai n()
{
char type[10] =" FRES";
| NST_STARTUP() ;
I NST_OPEN (vm "vxi, 24");
I NST_SEND (vm " SENSE: FUNCTI ON %8", type);

\J J

Chapter 5 115

Compiled SCPI Command Reference
INST_STARTUP

|
INST _STARTUP
The instrument start-up command starts the register-based operating system.
Syntax | NST_STARTUP ();
Comments » This command must be executed before any d&Eér STER
configured commands.
Example This example shows a common place to use the instrument start-up command.
/ I NST_DECL(vm "E1411B", REG STER); \
mai n()
{

| NST_STARTUP() ;

I NST_OPEN (vm "vxi, 24");
| NST_CLEAR(VN) ;

0 Y,

116 Chapter5

Compiled SCPI Command Reference
INST_TRIGGER

INST_TRIGGER

The instrument trigger command sends an | EEE-488.2 equivalent group
execute trigger to the instrument specified by the id parameter.

Syntax I NST_TRI GGER (id) ;

Parameters

Parameters Description

id The user variable name for the instrument. This is the variable name
that you assigned to the instrument in the | NST_DECL or

I NST_EXTERN command. Once the variable name is assigned, you
can use that variable to send information to the instrument.

For example,

INST_DECL (vm "E1411B", REG STER);/* assigns vari abl e*/
I NST_TRI GGER (vn); [*Triggers E1411B*/

Comments » For MESSAGE configurations, C-SCPI uses the SICir i gger (i d)
function. See the SICL for more information.

Example This example shows the instrument trigger command being used.

/ I NST_DECL(vm "E1411B", REG STER); \
mai n()

{
| NST_STARTUP() ;

I NST_OPEN (vm "vxi, 24");

| NST_TRI GGER(VI) ;

U Y,

Chapter 5 117

Compiled SCPI Command Reference
INST_TRIGGER

Compiled SCPI Functions

The Compiled SCPI functions are provided as additional set of functionality.
Each function is described in the following form:

C-SCPI Function (parameterl, parameter2, [parameter 3], etc.)

The C-SCPI functionislisted at the top of the page. Each function has a short
description and the following information:

-- Function Syntax

-- Parameters

-- Comments

-- Example Program Segment

118 Chapter5

Compiled SCPI Command Reference
cscpi_error

CScpi_error

The C-SCPI error function provides error trapping for instrument run-time
errors. Every time arun-time error is put into an instrument’s error queue, a
dummy cscpi _error functionis called. However, if you write your own
cscpi _error function and link it into your program, your function will be
called instead. We have provided an example error routine you can usein
your programs.

Syntax cscpi _error (sicl inst, error_number)

Example Theexamplecscpi _error routine provided iscalled when arun-time error
is put into an instrument’s error queue. This routine prints the instrument’s
error number and message. If you use this error routine, you must compile
and link it into your main program.

//*cscpi _error.c*/ \

/*This routine provides the SCPI error routine for run tine errors.*/
[*Errors in the instrunent’s error queue are reported.*/

#i ncl ude <cscpi . h>
void cscpi_error (INST sicl_inst, int error_nunber)

{
char string[20]="SYST: ERR?";

char result[255];

cscpi _exe(sicl _inst,string,strlen(string),result,sizeof(result));

printf ("ERROR %", result);
exit(1);

& J

See Chapter 4, “Troubleshooting Compiled SCPI,” for more information on
thecscpi _error routine.

Chapter 5 119

Compiled SCPI Command Reference
cscpi_exe

CScpi_exe

The Compiled SCPI execute function allows you to use an interactive mode
of operationwith REG STER configurations only. With thisfunction the SCPI
commands are parsed and executed at run time.

Syntax cscpi _exe (id,cmd_string, cmd_length, result, result_length) ;
Parameters
Parameters Description
id The user variable name for the instrument. This is the variable name

that you assigned to the instrument in the | NST_DECL or

I NST_EXTERN command. Once the variable nhame is assigned, you
can use that variable to send information to the instrument.

For example,

INST_DECL (vm "E1411B", REG STER);/* assigns vari abl e*/
cscpi _exe (vm command, strlen(conmand),
result, sizeof(result)); /*sends to E1411B*/

cmd_string | The string variable containing the SCPI commands. See the
instrument’s VXI User's Manual for information on the SCPI
commands, or see the instrument’'s C-SCPI online documentation.

cmd_length | The length of the cmd_string parameter. If you are using this interactively,
you can use the C string length function (st r | en) to get this length.

result The address location where the results of an instrument query are to
be stored. The address location must be a pointer of type char [].

result_length | The maximum length of the returned string. If you are using this call
interactively, you can use the C size of function (si zeof ()) to get this
length.

Comments « This function is only interactive if you write it into your program to
prompt the user for SCPI commands. See “Interactive Functions” in
Chapter 2 for a more detailed exampleosfcpi _exe.

« The char array returned fogsult includes a new line at the end of the
array. Therefore, you do not have to include a new line if you print the
results.

120 Chapter5

Example

Compiled SCPI Command Reference
cscpi_exe

This example showscscpi _exe being used in aloop prompting for input.

~

/I NST_DECL (vm "E1411B"', REG STER);

main ()

{
char result [255];
char conmand [255];

| NST_STARTUP ();
I NST_OPEN (vm "vxi, 24");
for (;;)
{
printf("Enter Conmand\n");
get s(conmand) ;
cscpi_exe (vm command, strlen(comrand), result,
si zeof (result));
if (result[0]!=0)
printf ("The result of the % conmand is : %",
conmand, result);

Chapter 5 121

Syntax

Parameters

Comments

Compiled SCPI Command Reference
cscpi_exe_fildes

cscpi_exe fildes

The C-SCPI execute file descriptor function allows you to specify afile
descriptor as an input file or pipe that contains SCPI commands to be
executed. The results of the executed SCPI commands are put into the file
descriptor specified for output. This function only works with REG STER
configurations. With this function the SCPI commands are parsed and
executed at run time.

cscpi _exe_fildes (id,in,out);

Parameters Description

id The user variable name for the instrument. This is the variable name
that you assigned to the instrument in the | NST_DECL or

I NST_EXTERN command. Once the variable nhame is assigned, you
can use that variable to send information to the instrument.

For example,

INST_DECL (vm "E1411B", REG STER);/* assigns vari abl e*/
cscpi _exe_fildes (vmo0, 1); /*sends to E1411B*/

in An integer as the file descriptor to determine the input file. This file
needs to contain SCPI commands to be executed. The SCPI
commands must be for the REG STER configured instrument
specified in the id parameter.

out An integer as the file descriptor to determine the output file. The
results from the executed SCPI commands are stored in this file.

« Sincest di n (0),st dout (1), andst derr (2) can be used, you can
do terminal I/O without having to open extra files.

e ONLY SCPI commands for the instrument specified inidhgarameter
can be used in the input file.

 The input and output may be piped or redirected to other controlling
processes. Connectisgdi n (0) andst dout (1) to pipes allows you to
have a separate process that is independent of SCPI or C-SCPI. See the Lynx
manuals for more information on piping or redirecting to other processes.

122 Chapter5

Compiled SCPI Command Reference
cscpi_exe_fildes

Example Thisexample usesthe st di n (0) and st dout (1) file descriptors with
cscpi _exe_fil des. The user can enter the SCPI commands from the
terminal keyboard and the results are displayed on the terminal screen. The
program continues until the user enters a<Ctrl D> which indicatesthe end of
thefile.

4 I NST_DECL (vm "E1411B', REG STER);)

nain()

{

| NST_STARTUP ();
I NST_OPEN (vm "vxi, 24");

printf("Enter SCPI Commands for E1411B. Enter Ctrl D to quit\n");
cscpi _exe fildes (vm 0,1);
printf ("Done\n");

Chapter 5 123

Syntax

Parameters

Comments

Compiled SCPI Command Reference
cscpi_exe_stream

CSCpi_exe_stream

The C-SCPI execute stream function allows you to specify afile or pipe that
contains SCPlI commands to be used as input. The commands are executed
and theresultsare stored in thefile or pipe specified for output. Thisfunction
only works with REG STER configurations. With this function the SCPI
commands are parsed and executed at run time.

cscpi _exe_stream (id, fin, fout) ;

Parameters Description

id The user variable name for the instrument. This is the variable name
that you assigned to the instrument in the | NST_DECL or

I NST_EXTERN command. Once the variable nhame is assigned, you
can use that variable to send information to the instrument.

For example,

INST_DECL (vm "E1411B", REG STER);/* assigns vari abl e*/
cscpi _exe_stream (vm stdin, stdout);/*sends to E1411B*/

fin A FILE* that contains SCPI commands to be executed. The stream
must contain ONLY SCPI commands for the REG STER configured
instrument specified in the id parameter. st di n can be used to get
input from the terminal keyboard.

fout A FILE* where the results of the executed SCPI commands will be
stored. st dout or st derr can be used to display the results on the
terminal display.

 Sincest di n, st dout , andst der r can be used, you can do terminal
I/0O without having to open extra files.

e ONLY SCPI commands for the instrument specified inidh@arameter
can be used in the input file. The input and output may be piped or
redirected to another controlling process. Connectingi n and
st dout to pipes allows you to have a separate process that is
independent of SCPI or C-SCPI. See the Lynx manuals for more
information on piping or redirecting to other processes.

124 Chapter5

Compiled SCPI Command Reference
cscpi_exe_stream

« If fout is a pipe, the ¢ functioset buf (f out, NULL); must be used
to disable buffering. If this function is not used, you will not get an
output until the stream buffer is full. See the Lynx manuals for
additional information.

Example Thisexampleusestbe di nandst dout fileswiththecscpi _exe_stream
function. The user can enter the SCPI commands from the terminal keyboard
and see the results on the terminal screen. The program will continue to run
until the user enters a <Ctrl D> which indicates the end of a file.

\

KINST_DECL (vm "E1411B", REG STER);

nain()

{

| NST_STARTUP () ;
I NST_OPEN (vm "vxi, 24");

printf("Enter SCPI Commands for E1411B. Enter Ctrl D to quit\n");
cscpi _exe_stream (vm stdin, stdout);

printf ("Done\n");

U /

Chapter 5 125

Compiled SCPI Command Reference
cscpi_get_overlap

cscpi_get_overlap

The Compiled SCPI get overlap function returns an integer value that tells if
the overlapped mode is ON (1) or OFF (0).

Syntax cscpi _get _overlap () ;

Example This example stores the current status of the overlapped mode, turns
overlapped ON, performsafunction, and then returns overlapped modeto the
statusit had before.

/?ain() \

i nt ol d_node;
i nt new node =1;

ol d_nbode = cscpi_get _overlap ();
cscpi _overlap (new_node);

cscpi _overlap (ol d_node);

\ J

126 Chapter5

Compiled SCPI Command Reference
cscpi_overlap

cscpi_overlap

The compiled SCPI overlap function turns the overlapped mode of operation
ON or OFF. Turning this mode ON allows overlapping commands to be
executed in parallel with other commands.

Syntax cscpi _overlap (mode),

Parameters

Parameters Description

mode Determines if overlapped is ON or OFF. mode is an integer. Any non-
zero value turns overlapped ON, and O turns it OFF.

Comments « Before using the overlapped mode, see “Overlapped Mode” in
Chapter 2 for information on the possible side effects.

» Overlapped mode is set to 0 (OFF) by the C-SQBIT_STARTUP ()
command.

Example This example shows how to turn the C-SCPI overlapped mode ON.

/?ain() I

int node = 1;

cscpi _overl ap (node);

Chapter 5 127

Compiled SCPI Command Reference
Compiled SCPI Quick Reference

Compiled SCPI Quick Reference

Command Syntax

Command Description

I NST_CLEAR(id) Sends an IEEE-488.2 equivalent device clear to the instrument
specified by the id parameter.
| NST_CLOSE(id) Closes the 1/0 channel of communication with a device and

releases memory used by the instrument driver.

| NST_DECL(id, driver, type)

Creates a variable declaration for the instrument specified by the
driver parameter.

| NST_EXTERN(id, driver, type)

Creates an external variable for the instrument specified by the
driver parameter.

I NST_ONSRQ id, ¢ function)

Installs the function specified by the ¢_function parameter as a
handler to be called when the instrument specified by id asserts a
service request.

| NST_OPEN(id, dev_addr)

Opens the 1/0 channel of communication with a device to the
instrument specified by the id parameter.

| NST_PARAM id, driver, type)

Defines an I/O channel that will be passed to functions.

I NST_QUERY(id, cmd_string,
readfmt [,c_expr.],
c_addf,c_addr..])

Executes the SCPI command in the cmd_stringparameter
addressed to the instrument specified by the id parameter. The
query results are stored in the c_addraddress.

| NST_READSTB(id, c_add)

Places the results of a serial poll from the instrument specified by
the id parameter in the address location specified by the c_addr
parameter.

I NST_SEND(id, cmd_string,
[,c_expr..])

Executes the SCPI command in the cmd_stringparameter
addressed to the instrument specified by the id parameter.

| NST_STARTUP()

Starts the register-based operating system.

| NST_TRI GGER(id)

Sends an IEEE-488.2 equivalent group execute trigger to the
register-based instrument specified by the id parameter.

128

Chapter5

Compiled SCPI Command Reference
Compiled SCPI Quick Reference

C-SCPI Calls C-SCPI Call Description

cscpi _error (sicl_inst, Provides error trapping for instrument run-time errors.
error_number)

cscpi _exe (id, cmd_string, Executes the SCPI cmd_string parameter at run time. The
cmd_length, result, result_length) | cmd_string parameter can be entered at run time.

cscpi _exe_fildes (id,in, |Executes SCPIcommands using file descriptors as input and

out) output to the command.

cscpi _exe_stream(id, fin, |Executes SCPI commands using streams as input and output

fout) to the command.

cscpi _get_overlap () Returns an integer value if overlapped mode is ON (1) or OFF
(0).

cscpi _overl ap (mode) Turns overlapped mode ON (1) or OFF (0).

Chapter 5 129

Compiled SCPI Command Reference
Compiled SCPI Quick Reference

Notes:

130 Chapter5

Online Documentation

Online Documentation

One of the learning products C-SCPI providesis online documentation. We
provide this online documentation in a form similar to UNIX® manual pages.
By using thevan command, you can get information on C-SCPI commands.
This appendix describes the C-SCPI documentation and how to use it.

How To Use Manual Pages

To use manual pages you type then command followed by a C-SCPI
command or an HP register-based instrument model number:

man name

where name is either a C-SCPI Macro command, C-SCPI function call, or an
HP register-based instrument model number. The following are examples of
valid manual page commands:

man cscpi pp
man | NST_DECL
man cscpi _exe

man cscpi _drivers

man E1411B
What is a A manual page is online documentation that is similar to the manual pages
Manual Page? provided in the UNIX environment. Manual pages are provided for the

following:

e C-SCPI Macro Commands

* C-SCPI Function Calls

» C-SCPI Preprocessor Command

« Each Supported HP VXI Register-Based Instrument

132 Appendix A

What Information is
Provided in the
Manual Pages?

C-SCPI Macro
Commands

C-SCPI Function
Calls

HP Register-Based
Instruments

Online Documentation

The C-SCPI manual pages provide a general description of C-SCPI

commands and calls. A quick reference for the supported HP register-based
instrumentsisalso provided. For additional information on these commands,

calls, and HP register-based instruments, see the appropriate user’'s manual.

The C-SCPI manual pages for C-SCPI macro commands provide the
documentation needed to use the C-SCPI macro command. The command
syntax, parameter description, and an example programming segment are all
provided.

The C-SCPI manual pages for C-SCPI functions provide the documentation
needed to use the functions. The parameter descriptions and an example
programming segment are provided.

Each supported register-based instrument has a C-SCPI manual page that
provides the SCPI command quick reference, commands not supported in
C-SCPI, commands changed in C-SCPI, query command response types,
a list of overlapping commands, and restrictions ol t&T _ONSRQ
command.

There is also a C-SCPI manual page calledpi _dr i ver s that provides

a list of all instrument drivers available for C-SCPI. This manual page also
lists what register-based instruments are supported for each C-SCPI driver.
You can use thescpi pp - ? command to find out what drivers are
installed on your system.

Appendix A 133

Online Documentation

What Does a If, for exampl e, you need information on the HP E1326B M ultimeter, typethe
Manual Page Look following at the user prompt:
Like?

man E1326B

The manual page for the HP E1326B Multimeter is similar to the following:

/" E13268 () E1326B () N

NAME
E1326B - SCPI Conmand Qui ck Reference

DESCRI PTI ON
The following is a SCPI command quick reference for the
HP E1326B Multineter. This quick reference provides:
Command Descri ptions
Commands Not Supported
Conmmands Changed
Query Conmmand Response Types
Over | appi ng Comuands

ONSRQ Restrictions

The SCPI commands are to be enbedded in HP Conpil ed SCPI
commands. For information on HP Conpiled SCPlI, see the
HP Conpil ed SCPI conmands in nmanual pages, or see the HP
Conpi |l ed SCPI | earni ng products.

For additional informati on on SCPI commands, see the VX
User's Guide for the instrument.

o /

Continued on Next Page

134 Appendix A

Online Documentation

/SCPI COMVAND DESCRI PTI ONS \

ABORt Pl ace multineter in idle state.

CALi br ati on: LFRequency 50 | 60 | M N | MAX
Change line reference frequency.

ONSRQ RESTRI CTI ONS
The foll owi ng commands can not be used in SRQ handl ers which

execute as an interrupt routine since they internally call
i wai t handl er:

if cscpi_overlap off
SENS: FUNC

SENS: [VOLT | RES]: APER
SENS: [VOLT | RES]: NPLC

SENS: [VOLT | RES]: RES

*RCL
*RST

I NI T, READ?, MEAS? (for aperture = 2.5 ns) or with 1460
scanners

The foll owi ng commands nmay cause an SRQ handl er to execute from
an interrupt routine if SRQis enabled on the condition:

Any overl apped conmand foll owed by the *OPC command with
cscpi _overlap on.

An INIT, READ? or MEAS? conmmand with aperture =2.5 ns which
\ sets the error bit froma tiner too fast error. j

Appendix A 135

Online Documentation

Notes:

136 Appendix A

Compiled SCPI Software Installation

Compiled SCPI Software Installation

The C-SCPI software is part of an entire software collection consisting of
LynxOS, SICL, C-SCPI, and Free Software Foundation code. It is pre-
installed on your controller at the factory

If you have had a problem with C-SCPI or have accidentally removed some
of the C-SCPI files, you may be able to recover these files from the install
media. To do this, connect a SCSI CD-ROM to the embedded controller,
insert the install CD, and mount the file system. For example:

nmount /dev/sd974.3 / mt

Then, you can comparefilesinthe/mnt directory with fileson your hard disk.
See the LynxOS manuals for more information on Lynx commands.

If you find that you need to reinstall the entire software system, please refer
to the HP E6237A VXI Pentium Real-Time Controller manual for
instructions.

138 Appendix B

Compiled SCPI File Sructure

Compiled SCPI File Structure

This appendix provides adescription and diagrams of the directory structure
for the C-SCPI software.

C-SCPI Directories

This section lists the directories and subdirectories with a brief description of each.

/usr/ hp75000

[usr/ hp75000/ bi n
/usr/ hp75000/ cscpi
[usr/ hp75000/ denos

[usr/ hp75000/ denos/ cscpi

Main Directory for HP Compiled SCPI Software
C-SCPI utilities

files used to build C-SCPI software

demos for HP 75000 family of products

example programs used in the C-SCPI manual set

Other Directories

These are other directory that also contain C-SCPI files.

/1ib
/usr/include
[usr/ man

/usr/ man/ cat 1

/usr/ man/ cat 3

/usr/ man/ cat5s

common library files, | i bcscpi . a isstored here
common header files, cscpi . h isstored here
manual pages

common manua pages, C-SCPlI commands man
pages are stored here

common manual pages, C-SCPI functions and
library routines man pages are stored here

common manual pages, C-SCPI instrument specific
details man pages are stored here

The/lib/thread/libcscpi. afileissymbolicaly linked to the

/1ib/libcscpi.afile

140

Appendix C

Compiled SCPI File Structure
Structure for C-SCPI on LynxOS

Sructurefor C-SCPI on LynxOS

Diagram for C-SCPI Directories

[usr/ hp7500

(bi n) (cscpi) (denps)
D G

obj

&>

ey

Appendix C 141

Compiled SCPI File Structure
Structure for C-SCPI on LynxOS

Notes:

142 Appendix C

Threads and Compiled SCPI

Threads and Compiled SCPI

LynxOS supports a multi-threaded processing model. Lynx uses the POSI X
thread facilities that are based on the preliminary draft of POSIX 1003.4a -
draft 4. See the LynxOS documentation for information on Lynx threads and
using them.

Writing your Compiled SCPI Programs

When you write your C-SCPI C programs using multiple threads, the
following restrictions apply:

-- | NST_STARTUP can only be called once in your program. This
C-SCPI command is used to start the register-based operating system
and cannot be executed more than once.

-- | NST_OPENand | NST_CLOSE must not be called from multiple
threads at one time. When these C-SCPI commands are executed, the
address table is modified, and you must not write to this table from
multiple threads at the same time.

-~ You must not access the same instrument from multiple threads at
onetime. Most C-SCPI commands access instruments. Some of the
commands are | NST_SEND, | NST_QUERY, | NST_TRI GGER,
cscpi _exe, etc. See Chapter 5 for acomplete list of C-SCPI
commands.

Y ou can protect your program against simultaneous accessto one instrument
from multiple threads with the LynxOS mutex library functions. See the
LynxOS documentation for information on using these functions.

Compiling your Compiled SCPI Programs

The HP SICL library uses threads during its normal execution. For this
reason, all C-SCPI programs are compiled with the multi-threaded option to
gcc. If you use threads in your C-SCPI C programs, you do not need to do
anything differently during the compile and link steps.

144 Appendix D

Error Messages

Error M essages

This appendix lists the possible errors you can receive while using the
C-SCPI preprocessor.

Compiled SCPI Preprocessor Errors

The errorslisted in the following table can be generated by the C-SCPI
preprocessor. C-SCPI checks for instrument syntax errors when the C-SCPI
preprocessor runs. The parameter ranges, however, are not checked until run
time, which will generate arun time error.

Table E-1. C-SCPI Preprocessor Errors

Error Message Possible Cause
duplicate device The device has aready been defined in an
| NST_DECL, | NST_EXTERN, or | NST_PARAM
unknown REQ STER dri ver C-SCPI does not recognize the driver parameter for

aREQ STER configurationinthe | NST_DECL,

I NST_EXTERN, or | NST_PARAMcommand. The
driver may not be installed on your system, or you
may be typing it in wrong.

expected REG STER or MESSAGE | Thetype parameter must specify the type of
configuration: REG STER or MESSAGE.

undecl ared identifier Theid that is being used was not declared in
| NST_DECL, | NST_EXTERN, or | NST_PARAM

SCPI error <error number>, <error gring>| SCPI syntax error. error number is the instrument
error number and error string is the instrument
error text.

unknown driver The instrument used as the driver parameter when
running the C-SCPI preprocessor (with -i option) is
not recognized.

use | NST_QUERY for ? conmmands |Thecmd string parameter contains a SCPI command
that has a question mark (?). Y ou must usethe
I NST_QUERY command for SCPI query commands.

146 Appendix E

Error Messages

Table E-1. C-SCPI Preprocessor Errors

Error Message Possible Cause

expected response format and |When using thé NST_QUERY command, you ar¢

response pointer missing theeadfmt and/orc_addr parameters.

expect ed response pointer When using thé NST_QUERY or| NST_SEND,
you are missing the one of the parameters in the
argument list.

expected string When using NST_QUERY or| NST_SEND, the
cmd_string is missing.

expected (Missing a left parentheses.

expected) Missing a right parentheses.

expected ; Missing a semicolon.

expected identifier Missing theid parameter.

expected , Missing a comma in the parameter list.

enpty parameter Missing a parameter (| ,).

missing or extra” Missing or extra double quote.

missing or extra Missing or extra single quote.

usage: cscpipp [-i driver] The correct usage of the preprocessor is as stated.

[-f datafile] [file]

only 1 file allowed Y ou cannot specify more than onefile for the
preprocessor.

Compileand Link Errors

Compile and Link errors can occur because of problemsin your C-SCPI
program. See Chapter 4, “Troubleshooting Compiled SCPI” for specific
information on resolving compile and link errors.

Appendix E 147

Error Messages

Run-TimeErrors

Run time errors occur when running your executable code. These errors can
occur for variousreasons. You can includeacscpi _error functionto trap
instrument run time errors. Y ou can also check thecscpi _open_error
global variable to see what type of open errors occur. See Chapter 4,
“Troubleshooting Compiled SCPI” for more information on these error
checking techniques.

Table E-2. cscpi_open_error Descriptions

Error # Most Likely Cause Description of Cause
0 No error has occurred. No error has occurred.
1 | NST_STARTUP was not included in the See “Resolving Compiled SCPI Run-Time
program before | NST_OPEN. Errors” beginning on page 56.
2 A mismatch between the declaration and the This occurs because the declaration made for
open for the instrument(s) was detected by tht@e instrumentl(NST_DECL) did not match
instrument driver. the instrument that was opened in the

I NST_OPEN command. This could also occur
if one of the cards in a scanning multimeter fis
not supported.

3 System is out of memory. Check your system’s resources.

4 Format of the address encountered with a | This occurs when the software cannot
multiple card instrument was incorrect. Formatmderstand an address of a multiple card
INST_OPEN(vm,"vxi,(nn,nn)"); instrument (scanning multimeter or Digital

Functional Test System, for example).
5 Invalid address was encountered See Program Description 2 of this section.

(SICL iopen(“vxi,nn™) cal failed.)

6 SICL isnot setup properly or not running (SICL | Determineif SICL isrunning on your system.
iopen(“vxi” call failed). (See Other Causes of Program Description 2
of this section.)

7 or 8 | SICL hasencountered aresource problem, or an | Contact your local Support organization.
Internal SICL error has occurred.

9, 10, |Internal SICL error has occurred. Contact your local Support organization.
oriil
12 or 13 | System encountered a resource problem Contact your local Support organization.
14 Instrument driver cannot provide therequired | This occurs when the instrument driver is not
information. compatible with the version of C-SCPI that is

installed on your system.

148 Appendix E

Other Documentation

Other Documentation

The C-SCPI manual set initself doesnot provide you with all theinformation
needed to successfully use this product. The following list might help you
find additional information:

* HP Pentium Controller Learning Products
» Lynx Real-Time Operating System Learning Products
e HP VXI Instrument Manuals

150 Appendix F

| ndex

A

Accessing C-SCPI Online
Documentation, 10
Advantages
Compiled SCPI, 12
Cscpi_error routine, 81
interactive functions, 32
overlapped mode, 36
ANSI C, 6,11

B
Block Data, storing, 27—28, 5961

C

-c Option, 7, 22
C Program, getstrtl.cs, 9
Clear Instrument Command, 88-89
Close Instrument Command, 90-91
Comma Operator
INST_QUERY, 103
INST_SEND, 111
Command Reference, 86—-129
Commands
*OPC?, 44, 46
*WAI, 46
-c option, 7, 22
cscpi_datafile, 28
cscpi_error, 50, 81-83, 119
cscpi_exe, 32, 62-63, 120-121
cscpi_exe_fildes, 33, 122-123
cscpi_exe_stream, 33, 124-125
cscpi_get_overlap, 40, 126
cscpi_overlap, 40-42, 127
cscpipp - ?, 10, 133
-f option, 27-28, 59-61
-g option, 7, 22
GDB software tool, 79
-l option, 7, 22
-i option, 29-31
iintrof, 44
iintron, 44
INST_CLEAR, 88-89
INST_CLOSE, 90-91
INST_DECL, 92-93

Commandsdontinued)

INST_EXTERN, 53-54, 94-95
INST_ONSRQ, 96-97
INST_OPEN, 98-99
INST_PARAM, 56, 100-101
INST_QUERY, 102-107
INST_READSTB, 108-109
INST_SEND, 28, 110-115
INST_STARTUP, 116
INST_TRIGGER, 117

-l option, 23

make, 25-26

man, 10, 132-135
-mthreads option, 7, 22
non-overlapping, 40

-0 option, 23
overlapped, 40
preprocessor, 27

quick reference, 128-129
SCPI only files, 29-31

Compiled SCPI

advantages of using, 12
command reference, 86—-129
description, 13
directories, 140
errors, 146, 148
file structure, 140-141
getting started with, 2-14
interactive functions, 32—-35, 62—-63
learning about, 11-14
overlapped mode, 36-46
overview, 16-17
preprocessor command, 27
programming with, 48—-64
running first program, 6-10
software installation, 138
structure on LynxQOS, 141
threads, 144
throughput, 12, 14
troubleshooting, 66—83
using, 16-46
GDB software, 79-80
in interactive mode, 62—63

Index-2

C (continued)

Commands (continued)
verifying
system setup, 4-5
your system, 3-5
who should use, 12
writing programs, 144
Compiling
-C option, 22
errors, resolving, 69-72
-g option, 7, 22
-1 option, 22
linking source code, 22-24
-mthreads option, 22
programs, 6, 144
Configuration
examples, 48
requiring overlapped mode, 37

Controlling Overlapped Execution, 43

Conventions Used, 2
Creating Source Code, 18
C-SCPI
creating executable code, 6
directories, 140
file structure, 140-141
learning about, 11-14
library, 24

online documentation, accessing, 10

overview, 16-17
preprocessor
cscpipp, 20, 66
errors, 66-68
running the, 20-21
process, 8
software installation, 138
source code, 18, 22-24
structure on LynxOS, 141
threads, 144
using, 16-46
in interactive mode, 62—63
verifying
system setup, 4-5
your system, 3-5
writing programs, 144

C-SCPI Commands
command reference, 86—-129
defining, 19
get overlap function, 126
header file, 19
instrument

clear, 88—-89

close, 90-91
declaration, 19, 92-93
execution, 120-125
external, 94-95
initialization, 19

open, 98-99
parameter, 100-101

programming commands, 19

query, 102-107
read status byte, 108—-109
run-time errors, 119
send, 110-115
service request, 96-97
startup, 116
trigger, 117
macro commands, 87-117
manual pages, 133
overlap function, 127
quick reference, 128-129
C-SCPI Functions, 118- 129
cscpi_error, 119
cscpi_exe, 120-121
cscpi_exe_fildes, 122-123
cscpi_exe_stream, 124-125
cscpi_get_overlap, 126
cscpi_overlap, 127
manual pages, 133
cscpi Library, 24
cscpi.h Header File, 19
cscpi_datafile, 28
cscpi_drivers Manual Page, 133

cscpi_error Command, 50, 81-83, 119

advantages of using, 81
example, 83
linking, 50

cscpi_exe Command, 32, 6263, 120-121
cscpi_exe_fildes Command, 33, 122-123

Index-3

C (continued)

Example Prograncontinued)

cscpi_exe_stream Command, 33, 124-125 Programming

cscpi_get_overlap Command, 40, 126

cscpi_open_error, 74-77, 148

cscpi_overlap Command, 40-42, 127

cscpipp, 6
cscpipp - ? Command, 10, 133
cscpipp Command, 20, 66

D
Debugging 32
using GNU debuggef79—80
Defining C-SCPI Commands
header file, 19

instrument
declaration, 19
initialization, 19

programming commands, 19
Determining Command Order
overlapped mode, 45
Disabling Interrupts, 44

E

Embedded Controller, 13
configuration, 49
external triggering, 64
Enabling Interrupts, 44
Errors
compile and link errors, resolving,
69-73
compile errors, 69-72
error messages, 146, 148
link errors, 69, 73

with external files, 53-55
with parameter list, 56—-58
with scanning multimeter, 51—
52
using
-f option, 28, 59-61
-i option, 30
interactive mode, 62—63
Examples
compile error, 69-72
directory location, 48
link error, 73
programming
with a parameter list, 56-58
with a scanning multimeter, 51—
52
with an external file, 53-55
run-time errors, 74-78, 82
syntax error, 66
system configuration, 48
usage error, 67—68
with cscpi_error, 50
Executable Code, creating, 8
Executing GDB, 80
External
file, programming with, 53-55
triggering with embedded computer, 64
variable reference, 94-95

F
-f Option, 27-28, 59-61

preprocessor errors, resolving, 66—68 File Descriptors, 33, 122

run-time errors, 148
description, 82
resolving, 74—-78

syntax errors, 66

trapping with cscpi_error, 50, 81-83, 119

troubleshooting, 66—83

usage errors, 67—68
Example Program

error routines, 50

getstrtl.cs, 6, 9

File Structure, 140-141
Format Specifiers, 103-105, 111-113
%a, 105, 113
%b, 104, 113
%d, 103, 111
%f, 104, 111
%r, 104, 112
%S, 104, 112
%s, 104, 112

Index-4

F (continued)

Function Calls, 118-127, 129, 133
cscpi_error, 119
cscpi_exe, 32, 62-63, 120-121
cscpi_exe_fildes, 33, 122-123
cscpi_exe_stream, 33, 124-125
cscpi_get_overlap, 40, 126
cscpi_overlap, 40-42, 127

G
-g Option 7, 22
GDB
commands79
executing 80
software tool 79—80
getstrt1.cs Example Program, 9
Getting Started with Compiled SCPI,
2—14
Compiled SCPI, 6
GNU Debugger, 79—80
Group Execute Trigger, 117

H

Header File, 19

Help
error messages, 146, 148
online help, 132—135

-1 Option, 7, 22

-i Option, 29-31

iintroff Command, 44

iintron Command, 44

INST_CLEAR Command, 88-89

INST_CLOSE Command, 90-91

INST_DECL Command, 92-93

INST_EXTERN Command, 53-54, 94—
95

INST_ONSRQ Command, 96-97

INST_OPEN Command, 98—99

INST_PARAM Command, 56, 100-101

INST_QUERY Command, 102-107

INST_READSTB Command, 108-109

INST_SEND Command, 28, 110-115
INST_STARTUP Command, 116
INST_TRIGGER Command, 117
Installing Software, 138
Instrument
clear command, 88-89
close command, 90-91
declaration, 19
INST_DECL, 92-93
external, INST_EXTERN, 94-95
initialization, 19
open command, 98—-99
parameter command, 100-101
programming commands, 19
query command, 102-107
read status byte command, 108-109
run-time errors, 82, 119
send command, 110-115
service request command, 96-97
startup command, 116
trigger command, 117
Interactive Functions, 32—-35, 62—-63
advantages, 32
debugging, 32
error checking, 32
programming with, 34-35, 62—63
using, 32-33
Interrupts, 43

L

-l Option, 23
Learning About Compiled SCPI, 11-14
Library, 24
cscpi, 24
m (math), 25
sicl, 24
Linking
cscpi library, 23
errors, resolving, 69, 73
-g option, 7
-l option, 7, 23
-0 option, 7, 23
programs, 7
source code, 22—-24
LynxOS File Structure, 141

Index-5

M

Macro Commands, 87-117, 133
INST_CLEAR, 88-89
INST_CLOSE, 90-91
INST_DECL, 92-93
INST_EXTERN, 94-95
INST_ONSRQ, 96-97
INST_OPEN, 98—99
INST_PARAM, 100-101
INST_QUERY, 102-107
INST_READSTB, 108-109
INST_SEND, 110-115
INST_STARTUP, 116
INST_TRIGGER, 117

Make Command, 25-26

Makefiles, 25-26

man Command, 10, 132-135

Manual Pages, 132-135
appearance, 134-135
C-SCPI function calls, 133
C-SCPI macro commands, 133
cscpi_drivers, 133
how to use, 132-135
register-based instruments, 133

MESSAGE Configuration
INST_DECL, 92-93
INST_EXTERN, 94-95
INST_PARAM, 100-101

-mthreads Option, 7, 22

Multimeter, programming with, 51-52

N
Non-Overlapping Command, 40

o

-0 Option, 23

Online Documentation, 132-135
Online Help, 132-135

*OPC?, 44, 46

Open Instrument Command, 98—99
Other Documentation, 150
Overlapped Commands, 40

O (continued)

Overlapped Mode, 36—-46
completing system calls, 44
configurations requiring, 37
controlling overlapped execution, 43
cscpi_get_overlap, 40, 126
cscpi_overlap, 40-42, 127
default mode, 36
determining command order, 45
determining to use, 36
overlapped commands, 40
parallel commands, 36
programming for efficiency, 45-46
throughput, 37-39
using, 40, 42

*OPC?, 44, 46

P

Parameter List, programming with, 56-58
Preprocessor
command, 27
error messages, 146, 148
errors, resolving, 66—68
-f option, 27-28, 59-61
options, 27-31
running the, 20-21
Programming
for efficiency, overlapped mode, 45-46
with a parameter list, 56-58
with a scanning multimeter, 51-52
with an external file, 53-55
with compiled SCPI, 48-64
with interactive functions, 34-35, 62—63
writing programs, 144
Protecting System Calls
iintroff, 44
iintron, 44
using *OPC?, 44

Q

Query Instrument Command, 102-107
Quick Reference, 128-129

Index-6

R

Read Status Byte Command, 108—109
REGISTER Configuration

INST_DECL, 92—93

INST_EXTERN, 94—95

INST_PARAM, 100—101
Resolving

compile and link errors, 69—73

compiled SCPI preprocessor errors,

66—68

run-time errors, 74—78
Reviewing

C-SCPI process, 8

getstrtl.cs program, 9
Running

C-SCPI preprocessor, 6, 2021

cscpipp, 6, 66

first C-SCPI Program, 6—10
running first program, 6
Run-time

commands, 32

errors, 74—r8, 82, 119, 148

S

Scanning Multimeter, programming
with, 51-52
SCPI Commands
using, 29-31
SCPI Description, 12
Send Instrument Command, 110-115
Sequential
commands, 38-39
programming, 36
Service Request Command, 96-97
SICL
description, 12
library, 24
more about, 13
Software Installation, 138
Source Code
compiling/linking, 22—-24
creating, 18
Start Instrument Command, 116
Storing Block Data, 27-28, 59-61

Streams, 33, 124-125
Syntax Errors, 66
System Configurations, 48

T

Threads and C-SCPI, 144
Throughput
comparing two programs, 38-39
Compiled SCPI, 12, 14
message-based cards, 12, 14
order of commands, 45
overlapped mode, 37-39
register-based cards, 12, 14
Time
for overlapped programs, 39
for sequential programs, 39
Trapping Errors, 50, 81-83
Trigger Instrument Command, 117
Triggering with HP Embedded
Computer, 64
Troubleshooting, 66—-83
Tutorial, 6

U

Usage Errors, 67—68
Using
*OPC?, 44, 46
Compiled SCPI, 16-46
in interactive mode, 62—63
C-SCPI, 16-46
in interactive mode, 62—63
cscpi_error, 83
GDB software, 79-80
GNU debugger, 79-80
interactive functions, 32—-33
libraries, 24
makefiles, 25-26
overlapped mode, 40, 42
SCPI only files, 29-31

Index-7

V

Verifying
C-SCPI system, 3-5
system setup, 4-5

VXI
controller, embedded, 13, 49
description, 12
instrument run-time errors, 82
instruments, 13

w

*WAI, 46
Wait for Complete (*WAI), 46
Writing C- SCPI Programs, 144

Index-8

	HP E6237A Compiled SCPI for LynxOS
	User’s Guide
	Notice
	Warranty Information
	U.S. Government Restricted Rights
	Copyright ” 1997 Hewlett-Packard Company. All righ...
	Printing History
	1. Getting Started with Compiled SCPI
	2. Using Compiled SCPI
	2. Using Compiled SCPI (continued)
	3. Programming with Compiled SCPI
	4. Troubleshooting Compiled SCPI
	5. Compiled SCPI Command Reference
	5. Compiled SCPI Command Reference (continued)
	A. Online Documentation
	B. Compiled SCPI Software Installation
	C. Compiled SCPI File Structure
	D. Threads and Compiled SCPI
	E. Error Messages
	F. Other Documentation

	1 Getting Started with Compiled SCPI
	Getting Started with Compiled SCPI
	Conventions Used

	Verifying your Compiled SCPI System
	Preparation Check�List
	Reviewing System Components
	Hardware Requirements
	Software Requirements
	Learning Products
	Verify System Setup

	LynxOS Real-Time Operating System
	SICL for LynxOS
	C-SCPI Software

	Running your First Compiled SCPI Program
	Note This chapter focuses on using C-SCPI Commands...
	Using the Getting Started Tutorial

	Note To Compile and Link in one step, refer to “Co...
	Review the C-SCPI Process
	1. Copy the getstrt1.cs program or Write a C progr...
	2. Run the C-SCPI Preprocessor
	3. Run your C compiler
	4. Link your code with C-SCPI and SICL libraries
	5. Run the executable code

	Reviewing getstrt1.cs Program
	Figure 1-1. getstrt1.cs C Program

	Accessing C-SCPI Online Documentation
	Additional Information

	Learning About Compiled SCPI
	What Is VXI?
	What Is SICL?
	What Is SCPI?
	Who Should Use Compiled SCPI?
	Advantages of Using Compiled SCPI
	Compiled SCPI System

	VXI Instruments
	Embedded VXI Controller
	More about Compiled SCPI and SICL
	Maximum System Throughput with Compiled SCPI

	2 Using Compiled SCPI
	Using Compiled SCPI
	Overview of C-SCPI
	Figure 2-1. Flowchart of C-SCPI Process

	Creating Source Code
	Defining the C-SCPI Commands
	 Header File - provides function prototype and va...
	 Instrument Declaration - makes your instrument d...
	 Instrument Initialization - initializes your ins...
	 Instrument Programming Commands - send commands ...
	Running the C-SCPI Preprocessor
	Figure 2-2. C-SCPI Preprocessor Process
	Figure 2-3. C-CSPI Source Code and Preprocessor Tr...

	Compiling/Linking your Code

	 Compiling. During this step the C compiler conve...
	Figure 2-4. Compile and Link Process

	 Linking. During this step the linker takes the o...
	 Compiling/Linking in One Step. You can also comp...
	Using Libraries
	Executing Your Program
	Using Makefiles

	Note a TAB must precede $(LD) and cscpipp lines.
	Note A TAB must precede cscpipp $<> $*.c

	Preprocessor Options
	The Compiled SCPI Preprocessor Command
	Storing Block Data in a Separate File (The -f Opti...
	Preprocessor Command with -f�Option
	Example Program
	Note C-SCPI requires the name of the pointer to th...
	Using SCPI Only Files (The -i Option)
	Preprocessor Command with -i Option

	 Run the C-SCPI Preprocessor:
	 Compile each file:
	 Link the files:
	Example Programs

	Interactive Functions
	Advantages of Using the Interactive Functions
	 You can enter the SCPI command at run time inste...
	 You can use the interactive functions as a means...
	Using Interactive Functions
	Programming with Interactive Functions
	Equipment Needed
	Program Description
	Program Listing
	Note The char array returned for result includes a...

	Overlapped Mode
	Determining if you Should use the Overlapped Mode
	Configurations Requiring Overlapped Mode
	Throughput and the Overlapped Mode

	Comparing Two Programs
	Figure 2-5. Programming Code, Overlapped vs. Non-O...
	Figure 2-6. Time for Sequential and Overlapped Pro...
	Overlapped Command

	 A NON-OVERLAPPING command is a command that does...
	 An OVERLAPPING command is a command that allows ...
	Using the Overlapped Mode
	Turning Overlapped Mode ON or OFF
	Note Turning overlapped mode OFF does not guarante...
	Determining if Overlapped Mode is ON or OFF
	Controlling Overlapped Execution
	Figure 2-7. When an Interrupt Occurs

	Use the HP SICL Function Calls to Temporarily Bloc...
	Use *OPC? to Finish SCPI Commands
	Programming for Efficiency

	Determining the Order of your Overlapping Commands...

	Note You will only gain throughput by overlapping ...
	Using the *OPC? Commands

	Note The *WAI command takes slightly less time tha...

	3 Programming with Compiled SCPI
	Programming with Compiled SCPI
	Looking at an Example System Configuration
	Embedded VXI Controller
	Figure 3-1. Embedded Controller Example Configurat...
	Providing an Error Routine
	1. Copy the cscpi_error.c routine into your own wo...
	2. Compile both your file and the cscpi_error.c fi...
	3. Link the files. For example:

	Program Listing
	Programming with a Scanning Multimeter

	Equipment Needed
	Program Description
	Program Listing
	/*example1.cs*/
	/*This programming example uses the C-SCPI command...
	/*measurement for a scanning voltmeter. */
	#include <stdio.h>
	#include <math.h>
	#include <cscpi.h> /*Needed for Preprocessor */
	/* commands. */
	int test1(void); /*function prototype for test1 */...
	INST_DECL(vm,”E1411”,REGISTER); /*declare instrume...
	main()
	{
	int fail;
	INST_STARTUP(); /* initialize instrument */
	/* operating system */
	INST_OPEN(vm,”vxi,(24,25)”); /* open scanning mete...
	/* 1411 logical address 24, and */
	/* scanner logical address 25 */
	if (!vm)
	{
	 printf(“open vm failed, error number: %d\n”,cs...
	 exit(1);
	}
	fail = test1(); /* run test using test1() */
	/* function */
	if (fail) /* check to see if test passed */
	{ /* or failed */
	printf(“TEST FAILED \n”);
	}
	else
	{
	printf(“TEST PASSED\n”);
	}
	exit(0);
	}
	int test1(void) /* a simple test function */
	{
	#define POINTS 10 /* number of points */
	 float a[POINTS]; /* define expected points */
	 float expected[POINTS]={1.0, 1.0, 1.0, 5.0, 5.0,...
	9.0, 0.0};
	 int fail = 0;
	 int i;
	/* query for results and put */
	/* into array */
	 INST_QUERY (vm, “MEAS:VOLT? 10, (@100:109)”,”%f”...
	for (i=0;i<POINTS;i++)
	{
	if (fabs(a[i]-expected[i]) > .01)
	{
	printf(“test point %d failed. Expected %f, measure...
	 i, expected[i], a[i]);
	fail=1;
	}
	}
	return fail;
	}
	Programming with an External File
	Equipment Needed
	Program Description
	Program Listing

	/*example2.cs*/
	/*This programming example uses the INST_EXTERN C_...
	/* */
	#include <stdio.h>
	#include <stdlib.h>
	#include <math.h>
	#include <cscpi.h> /*Needed for Preprocessor */
	INST_EXTERN(vm,”E1411”,REGISTER); /*declare extern...
	/* variable */
	test1() /* a simple test function */
	{
	#define POINTS 10 /* number of points */
	float a[POINTS]; /* define expected points */
	float expected[POINTS]={1.0, 1.0, 1.0, 5.0, 5.0, 0...
	9.0, 0.0};
	int fail = 0;
	int i;
	/* query for results and put */
	/* in an array */
	INST_QUERY (vm, “MEAS:VOLT? 10, (@100:109)”,”%f”,a...
	for (i=0;i<POINTS;i++)
	{
	if (fabs(a[i]-expected[i]) > .01)
	{
	printf(“test point %d failed. Expected %f, measure...
	i, expected[i], a[i]);
	fail=1;
	}
	}
	return fail;
	}
	/*example2a.cs*/
	/*This programming example uses the extern ANSI C ...
	/*execute test1() listed on the previous page. */
	#include <stdio.h>
	#include <math.h>
	#include <cscpi.h> /*Needed for Preprocessor */
	/* commands. */
	INST_DECL(vm,”E1411”,REGISTER); /*declare instrume...
	extern int test1(); /* declare function from other...
	/* file */
	main()
	{
	int fail;
	INST_STARTUP(); /* initialize instrument os */
	INST_OPEN(vm,”vxi,(24,25)”); /* open scanning mete...
	/* 1411 logical address 24, and */
	/* scanner logical address 25 */
	if (!vm)
	{
	 printf(“open vm failed, error number: %d\n”, c...
	 exit(1);
	}
	fail = test1(); /* run test using test1() */
	/* external function */
	if (fail) /* check to see if test passed */
	{ /* or failed */
	printf(“TEST FAILED \n”);
	}
	else
	{
	printf(“TEST PASSED\n”);
	}
	exit(0);
	Programming with a C-SCPI Parameter List
	Equipment Needed
	Program Description
	Program Listing

	/*example3.cs*/
	/*This example shows how you can use a file of you...
	/*for a specific instrument.*/
	#include <stdio.h>
	#include <stdlib.h>
	#include <cscpi.h>
	#define VM_ADDR “vxi,24”
	#define FUNCTION “VOLT:AC”
	#define RANGE 8
	extern void E1411_func(INST id, char *func);
	extern void E1411_volt_range (INST id, double rang...
	extern float E1411_read (INST id);
	main()
	{
	float answer;
	INST_DECL (vm, “E1411”, REGISTER);
	INST_STARTUP ();
	INST_OPEN (vm, VM_ADDR);
	E1411_func (vm, FUNCTION);
	E1411_volt_range (vm, RANGE);
	answer = E1411_read (vm);
	printf (“Answer : %f\n”,answer);
	}
	/*example3a.cs*/
	/*This example is a file of drivers that can be pr...
	/*used as a library of function calls from other C...
	#include <cscpi.h> /*Needed for INST commands */
	/*This function can be used to specify the functio...
	/*multimeter.*/
	void E1411_func (INST_PARAM (id, “E1411”, REGISTER...
	{
	INST_SEND (id, “FUNC %S” , func);
	}
	/*This function can be used to specify the voltage...
	/*the multimeter.*/
	void E1411_volt_range (INST_PARAM (id, “E1411”, RE...
	 double range)
	{
	INST_SEND (id, “VOLT:RANGE %f “, range);
	}
	/*This function can be used to read data from the ...
	float E1411_read (INST_PARAM (id, “E1411”, REGISTE...
	{
	float result;
	INST_QUERY (id, “READ?”, “%f”, &result);
	return (result);
	}
	Storing Block Data in a Separate File (The -f Opti...
	Equipment Needed
	Program Description
	Program Listing

	/*example4.cs*/
	/*This program can be used with the -f option so t...
	/*data is stored in a separate file by the preproc...
	#include <stdio.h>
	#include <cscpi.h>
	#define DIG_ADDR “vxi,144”
	INST_DECL (dig, “E1330B”, REGISTER); /*define inst...
	FILE *cscpi_datafile; /*must be used as pointer to...
	/*file opened for block data */
	main ()
	{
	INST_STARTUP (); /*start operating system */
	INST_OPEN (dig, DIG_ADDR); /*initialize digital I/...
	/*test to see if INST_OPEN worked, 0 returned in f...
	if (!dig)
	{
	printf (“Open FAILED. Error number: %d\n”, cscpi_o...
	exit (1);
	}
	/*open data file for block data*/
	cscpi_datafile = fopen (“example4.dat”, “rb”);
	/*test to see if fopen worked*/
	if (!cscpi_datafile)
	{
	printf (“Open example4.dat failed\n”);
	exit (1);
	}
	/*call function with block data*/
	load_traces ();
	/*put your test here*/
	exit (0);
	}
	/*function to load traces*/
	load_traces ()
	{
	/*This function generates code to send data to an ...
	/*When the C-SCPI preprocessor is run, the data is...
	/*file that cscpi_datafile is pointing to.*/
	/*set up memory block to send data*/
	INST_SEND (dig, “DIG:TRACE:DEF block1, 1000”);
	INST_SEND (dig, “DIG:TRACE:DEF block2, 1000”);
	/*send data to file, must be 100 bytes*/
	INST_SEND (dig, “DIG:TRACE:DATA block1, #3100”
	 1234567890123456789012345678901234567890123456789...
	 1234567890123456789012345678901234567890123456789...
	INST_SEND (dig ,”DIG:TRACE:DATA block2, #3100”
	 abcdefghijklmnopqrstuvwxyz01234567890123456789012...
	 1234567890123456789012345678901234567890123456789...
	}
	Using C-SCPI in the Interactive Mode
	Equipment Needed
	Program Description
	Program Listing

	/*example6.cs*/
	/*This is a C-SCPI example of using the interactiv...
	/*program is written to prompt the user for the SC...
	/*The command is then executed using the cscpi_exe...
	#include <stdio.h>
	#include <stdlib.h>
	#include <string.h>
	#include <cscpi.h>
	#define LENGTH 1000 /*maximum length of SCPI comma...
	INST_DECL (vm, “E1411B”, REGISTER); /*declaration ...
	main()
	{
	 char command [LENGTH]; /*string variable for SCP...
	 char result [LENGTH]; /*string variable for resu...
	/*prompt user to enter logical address of multimet...
	puts (“Enter the logical address of the vm, for ex...
	 vxi,24: \n”);
	gets (command);
	INST_STARTUP (); /*start operating system*/
	INST_OPEN (vm, command); /*initialize multimeter*/...
	/*if 0 returned, open failed and print message*/
	if (!vm)
	{
	fprintf (stderr, “vm at %s failed to open\n”,comma...
	exit (1);
	}
	/*loop to enter SCPI commands*/
	for (;;)
	{
	printf (“Enter a SCPI command for the multimeter. ...
	 to exit\n”);
	while (!gets(command)) /*loop until get a nonzero ...
	; /*gets may terminate on interrupt*/
	if (!*command) /*caused by the command*/
	break;
	result[0] = 0; /*clear result string*/
	/*C-SCPI call to execute the SCPI command*/
	cscpi_exe (vm, command, strlen(command),result, si...
	/*if you have a result, print it*/
	if (result[0])
	printf (“Result : %s”, result);
	}
	printf (“DONE\n”);
	exit (0);
	}
	Note The char array returned for result includes a...
	Triggering with the HP Embedded Computer

	4 Troubleshooting Compiled SCPI
	Troubleshooting Compiled SCPI
	Resolving Compiled SCPI Preprocessor Errors
	Syntax Error Example
	Error Message
	Resolution

	Program Description
	/* source2.cs: set voltmeter to measure DC volts, ...
	/* results, and print the results.*/
	#include <stdio.h>
	#include <cscpi.h>
	INST_DECL(vm,"E1411B",REGISTER);
	main ()
	{
	float numb1=2.0;
	float vm_dc;
	INST_STARTUP();
	INST_OPEN(vm,"vxi,24");
	INST_SEND(vm,"CONF:VOLT:DC %f,numb1);
	INST_QUERY(vm,"READ?","%f",&vm_dc);
	exit(0);
	}
	Where To Go For More Information
	Usage Error Example
	Error Message
	Resolution

	Program Description

	/* source2.cs: set voltmeter to measure DC volts, ...
	/* results, and print the results. */
	#include <stdio.h>
	#include <cscpi.h>
	main ()
	{
	float numb1=2.0;
	float vm_dc;
	INST_STARTUP();
	INST_OPEN(vm,"vxi,24");
	.
	.
	INST_DECL(vm,"E1411B",REGISTER);
	.
	.
	exit(0);
	}
	Where To Go For More Information
	Resolving Compile and Link Errors
	Compile Error Examples
	Error Message

	source2.cs:5:parse error before 'vm'
	source2.cs:5:warning: data definition lacks type o...
	source2.cs:In function main:
	.
	.
	.
	Resolution
	Program Description

	/* source2.cs: set voltmeter to measure DC volts, ...
	/* results, and print the results. */
	#include <stdio.h>
	#include <stdlib.h>
	INST_DECL(vm,"E1411B",REGISTER);
	main ()
	{
	float numb1=2.0;
	float vm_dc;
	INST_STARTUP();
	INST_OPEN(vm,"vxi,24");
	.
	exit(0);
	}
	Note Once you have resolved a compile error, you M...
	Error Message
	Resolution
	Program Description
	/* source2.cs: set voltmeter to measure DC volts, ...
	/* results, and print the results. */
	#include <stdio.h>
	#include <cscpi.h>
	INST_DECL(vm,"E1411B",REGISTER);
	main ()
	{
	float numb1=2.0;
	float vm_dc;
	.
	.
	INST_SEND(vm,"CONF:VOLT:DC %f",numb1);
	INST_QUERY(vm,"READ?","%f",vm_dc);
	exit(0);
	}

	Note Once you have resolved a compile error, you M...
	Where To Go For More Information
	Error Message
	Resolution

	Note Once you have resolved a compile error, you M...
	Program Description
	/* source2.cs: set voltmeter to measure DC volts, ...
	/* results, and print the results. */
	#include <stdio.h>
	#include <cscpi.h>
	INST_DECL(vm,"E1411B",REGISTER);
	main ()
	{
	char err_msg[100];
	int err_num;
	.
	.
	INST_QUERY(vm,"SYST:ERR?","%d,%s",err_num,err_msg)...
	.
	exit(0);
	}
	Where To Go For More Information
	Link Error Examples
	Error Message
	Resolution
	Error Message
	Resolution
	Where To Go For More Information
	Resolving Compiled SCPI Run-Time Errors
	Error Message
	Resolution

	.
	Table 4-1. Run-time Errors
	Note Once you have resolved a run-time error, you ...
	Program Description
	/* source2.cs: set voltmeter to measure DC volts, ...
	/* results, and print the results. */
	#include <stdio.h>
	#include <stdlib.h>
	#include <cscpi.h>
	INST_DECL(vm,"E1411B",REGISTER);
	main ()
	{
	float numb1=2.0;
	float vm_dc;
	INST_OPEN(vm,"vxi,24");
	if (vm==0)
	{
	printf("open failed on vm\n");
	printf("cscpi open error number: %d\n", cscpi_open...
	exit(1);
	}
	INST_SEND(vm,"CONF:VOLT:DC %f",numb1);
	INST_QUERY(vm,"READ?","%f",&vm_dc);
	exit(0);
	}
	/* source2.cs: set voltmeter to measure DC volts, ...
	/* results, and print the results. */
	#include <stdio.h>
	#include <stdlib.h>
	#include <cscpi.h>
	INST_DECL(vm,"E1411B",REGISTER);
	main (){
	float numb1=2.0;
	float vm_dc;
	INST_STARTUP();
	INST_OPEN(vm,"vxi,24");
	if (vm==0){
	.
	.
	.
	}
	Error Message
	Resolution

	Note Once you have resolved a run-time error, you ...
	Program Description
	Other Causes
	Where To Go For More Information
	Using GNU Debugger
	Preparing to Use�GDB
	Executing GDB
	Trapping Errors with cscpi_error

	Note cscpi_error is only called for REGISTER confi...
	VXI Instrument Run-time Errors
	/*This program segment sends a SCPI command to the...
	/*Multimeter that is out of range.*/
	#include <stdio.h>
	#include <cscpi.h>
	INST_DECL (vm, "E1411B", REGISTER);
	main()
	{
	float answer;
	INST_STARTUP();
	INST_OPEN (vm, "vxi,24");
	INST_SEND (vm, "FUNC:VOLT:AC");
	INST_SEND (vm, "VOLT:RANGE 400");
	INST_QUERY (vm, "READ?", "%f", &answer);
	printf ("answer: %f\n",answer);
	}
	Using cscpi_error

	/*cscpi_error.c*/
	/*This routine provides the SCPI error routine for...
	/*Errors in the instrument's error queue are repor...
	#include <cscpi.h>
	void cscpi_error (INST sicl_inst, int error_number...
	{
	 char string[20]="SYST:ERR?";
	 char result[255];
	 cscpi_exe(sicl_inst,string,strlen(string),result...
	 printf ("ERROR: %s",result);
	 exit(1);
	}

	5 Compiled SCPI Command Reference
	Compiled SCPI Command Reference
	Compiled SCPI Macro Commands
	Compiled SCPI Functions
	Compiled SCPI Macro Commands

	INST_CLEAR
	Syntax
	Parameters
	id

	Comments
	Example

	INST_CLOSE
	Syntax
	Parameters
	id

	Comments
	Example

	INST_DECL
	Syntax
	Parameters
	id
	driver
	type

	Comments
	Example

	INST_EXTERN
	Syntax
	Parameters
	id
	driver
	type

	Comments
	Example

	INST_ONSRQ
	Syntax
	Parameters
	id
	c_function

	Comments
	Example

	INST_OPEN
	Syntax
	Parameters
	id
	dev_addr

	Comments
	Example

	INST_PARAM
	Syntax
	Parameters
	id
	driver
	type

	Comments
	Example

	INST_QUERY
	Syntax
	Parameters
	id
	cmd_string
	cmd_string Format Specifiers
	%d
	cmd_string Format Specifiers (continued)
	%f
	 %s
	%S
	%r
	cmd_string Format Specifiers (continued)
	readfmt
	[c_expr]
	c_addr
	[c_addr]

	Comments
	Example

	INST_READSTB
	Syntax
	Parameters
	id
	c_addr

	Comments
	Example

	INST_SEND
	Syntax
	Parameters
	id
	cmd_string
	cmd_string Format Specifiers
	cmd_string Format Specifiers (continued)
	%d
	%f
	cmd_string Format Specifiers (continued)
	 %s
	%S
	%r
	cmd_string Format Specifiers (continued)
	[c_expr]

	Comments
	Example

	INST_STARTUP
	Syntax
	Comments
	Example

	INST_TRIGGER
	Syntax
	Parameters
	id

	Comments
	Example
	Compiled SCPI Functions

	cscpi_error
	Syntax
	Example
	/*cscpi_error.c*/
	/*This routine provides the SCPI error routine for...
	/*Errors in the instrument's error queue are repor...
	#include <cscpi.h>
	void cscpi_error (INST sicl_inst, int error_number...
	{
	char string[20]="SYST:ERR?";
	char result[255];
	cscpi_exe(sicl_inst,string,strlen(string),result,s...
	printf ("ERROR: %s",result);
	exit(1);
	}

	cscpi_exe
	Syntax
	Parameters
	id
	cmd_string
	cmd_length
	result
	result_length

	Comments
	Example

	cscpi_exe_fildes
	Syntax
	Parameters
	id
	in
	out

	Comments
	Example
	INST_DECL (vm, "E1411B", REGISTER);
	.
	.
	main ()
	{
	.
	.
	 INST_STARTUP ();
	 INST_OPEN (vm, "vxi,24");
	 printf("Enter SCPI Commands for E1411B. Enter Ct...
	 cscpi_exe_fildes (vm, 0,1);
	 printf ("Done\n");
	.
	.
	.
	}

	cscpi_exe_stream
	Syntax
	Parameters
	id
	fin
	fout

	Comments
	Example
	INST_DECL (vm, "E1411B", REGISTER);
	.
	.
	.
	main ()
	{
	 .
	 .
	 .
	 INST_STARTUP ();
	 INST_OPEN (vm, "vxi,24");
	 printf("Enter SCPI Commands for E1411B. Enter Ct...
	 cscpi_exe_stream (vm, stdin, stdout);
	 .
	 .
	 .
	printf ("Done\n");
	}

	cscpi_get_overlap
	Syntax
	Example

	cscpi_overlap
	Syntax
	Parameters
	mode

	Comments
	Example

	Compiled SCPI Quick Reference

	A Online Documentation
	Online Documentation
	How To Use Manual Pages
	What is a Manual�Page?
	What Information is Provided in the Manual Pages?
	C-SCPI Macro Commands
	C-SCPI Function Calls
	HP Register-Based Instruments
	What Does a Manual Page Look Like?
	E1326B () E1326B ()
	NAME
	E1326B - SCPI Command Quick Reference
	DESCRIPTION
	The following is a SCPI command quick reference fo...
	Command Descriptions
	Commands Not Supported
	Commands Changed
	Query Command Response Types
	Overlapping Commands
	ONSRQ Restrictions
	The SCPI commands are to be embedded in HP Compile...
	For additional information on SCPI commands, see t...
	SCPI COMMAND DESCRIPTIONS
	ABORt Place multimeter in idle state.
	CALibration:LFRequency 50 | 60 | MIN | MAX
	Change line reference frequency.
	ONSRQ RESTRICTIONS
	The following commands can not be used in SRQ hand...
	if cscpi_overlap off
	SENS:FUNC
	SENS:[VOLT | RES]:APER
	SENS:[VOLT | RES]:NPLC
	SENS:[VOLT | RES]:RES
	CONF:....
	*RCL
	*RST
	INIT, READ?, MEAS? (for aperture = 2.5 ms) or with...
	The following commands may cause an SRQ handler to...
	an interrupt routine if SRQ is enabled on the cond...
	Any overlapped command followed by the *OPC comman...
	An INIT, READ? or MEAS? command with aperture =2.5...

	B Compiled SCPI Software Installation
	Compiled SCPI Software Installation

	C Compiled SCPI File Structure
	Compiled SCPI File Structure
	C-SCPI Directories
	Other Directories

	Structure for C-SCPI on LynxOS

	D Threads and Compiled SCPI
	Threads and Compiled SCPI
	Writing your Compiled SCPI Programs
	Compiling your Compiled SCPI Programs

	E Error Messages
	Error Messages
	Compiled SCPI Preprocessor Errors
	Table E-1. C-SCPI Preprocessor Errors
	Compile and Link Errors
	Run-Time Errors

	Table E-2. cscpi_open_error Descriptions

	F Other Documentation
	Other Documentation
	Index
	A
	B
	C
	C (continued)
	C (continued)
	D
	E
	F
	F (continued)
	G
	H
	I
	L
	M
	N
	O
	O (continued)
	P
	Q
	R
	S
	T
	U
	V
	W

